
LATEXMK (1) General Commands Manual LATEXMK (1)

NAME
latexmk - generate LaTeX document

SYNOPSIS
latexmk [options] [file ...]

DESCRIPTION
Latexmk completely automates the process of compiling a LaTeX document. Essentially, it is like a spe-
cialized relative of the general make utility, but one which determines dependencies automatically and has
some other very useful features. In its basic mode of operation latexmk is given the name of the primary
source file for a document, and it issues the appropriate sequence of commands to generate a .dvi, .ps, .pdf
and/or hardcopy version of the document.

By default latexmk will run the commands necessary to generate a .dvi file, which copies the behavior of
earlier versions when only latex was available.

Latexmk can also be set to run continuously with a suitable previewer. In that case the latex program (or
one of its relatives), etc, are rerun whenever one of the source files is modified, and the previewer automati-
cally updates the on-screen view of the compiled document.

Latexmk determines which are the source files by examining the log file. (Optionally, it also examines the
list of input and output files generated by the -recorder option of modern versions of latex (and pdflatex,
xelatex, lualatex). See the documentation for the -recorder option of latexmk below.) When latexmk is
run, it examines properties of the source files, and if any have been changed since the last document genera-
tion, latexmk will run the various LaTeX processing programs as necessary. In particular, it will repeat the
run of latex (or a related program)) often enough to resolve all cross references; depending on the macro
packages used. With some macro packages and document classes, four, or even more, runs may be needed.
If necessary, latexmk will also run bibtex, biber, and/or makeindex. In addition, latexmk can be configured
to generate other necessary files. For example, from an updated figure file it can automatically generate a
file in encapsulated postscript or another suitable format for reading by LaTeX.

Latexmk has two different previewing options. With the simple -pv option, a dvi, postscript or pdf pre-
viewer is automatically run after generating the dvi, postscript or pdf version of the document. The type of
file to view is selected according to configuration settings and command line options.

The second previewing option is the powerful -pvc option (mnemonic: "preview continuously"). In this
case, latexmk runs continuously, regularly monitoring all the source files to see if any have changed. Every
time a change is detected, latexmk runs all the programs necessary to generate a new version of the docu-
ment. A good previewer will then automatically update its display. Thus the user can simply edit a file
and, when the changes are written to disk, latexmk completely automates the cycle of updating the .dvi
(and/or the .ps and .pdf) file, and refreshing the previewer’s display. It’s not quite WYSIWYG, but usefully
close.

For other previewers, the user may have to manually make the previewer update its display, which can be
(e.g., with some versions of xdvi and gsview) as simple as forcing a redraw of its display.

Latexmk has the ability to print a banner in gray diagonally across each page when making the postscript
file. It can also, if needed, call an external program to do other postprocessing on generated dvi and post-
script files. (See the options -dF and -pF, and the documentation for the $dvi_filter and $ps_filter configu-
ration variables.) These capabilities are leftover from older versions of latexmk, but are currently non-
functional. More flexibility can be obtained in current versions, since the command strings for running
*latex can now be configured to run multiple commands. This also extends the possibility of postprocess-
ing generated files.

Latexmk is highly configurable, both from the command line and in configuration files, so that it can ac-
commodate a wide variety of user needs and system configurations. Default values are set according to the
operating system, so latexmk often works without special configuration on MS-Windows, cygwin, Linux,
OS-X, and other UNIX systems. See the section "Configuration/Initialization (rc) Files", and then the later
sections "How to Set Variables in Initialization Files", "Format of Command Specifications", "List of Con-
figuration Variables Usable in Initialization Files", "Custom Dependencies", and "Advanced Configuration"

27 December 2024 1

LATEXMK (1) General Commands Manual LATEXMK (1)

A very annoying complication handled very reliably by latexmk, is that LaTeX is a multiple pass system.
On each run, LaTeX reads in information generated on a previous run, for things like cross referencing and
indexing. In the simplest cases, a second run of LaTeX suffices, and often the log file contains a message
about the need for another pass. However, there is a wide variety of add-on macro packages to LaTeX, with
a variety of behaviors. The result is to break simple-minded determinations of how many runs are needed
and of which programs. Latexmk has a highly general and efficient solution to these issues. The solution
involves retaining between runs information on the source files, and a symptom is that latexmk generates an
extra file (with extension .fdb_latexmk, by default) that contains the source file information.

LATEXMK OPTIONS AND ARGUMENTS ON COMMAND LINE
In general the command line to invoke latexmk has the form

latexmk [options] [file]

All options can be introduced by single or double "-" characters, e.g., "latexmk -help" or "latexmk --help".

Note 1: In the documentation, ’*latex’ means any of the supported engines, i.e., currently latex, lualatex,
pdflatex, xelatex. Mention of a specific one of these normally refers that specific engines. Earlier versions
of this documentation weren’t so consistent. Which of these is used to compile a document, depends on the
configuration and the command line arguments.

Note 2: In addition to the options in the list below, latexmk recognizes almost all the options recognized
by the *latex programs in their current TeXLive and MiKTeX implementations. Some of the options for
these programs trigger special action or behavior by latexmk, in which case they have specific explanations
in this document; in this case they may or may not be passed to *latex as well.

Run latexmk with the -showextraoptions to get a list of the options that latexmk accepts and that are simply
passed through to *latex. See also the explanation of the -showextraoptions option for more information.

Definitions of options and arguments

file One or more files can be specified. If no files are specified, latexmk will, by default, run on all
files in the current working directory with a ".tex" extension. This behavior can be changed: see
the description concerning the @default_files variable in the section "List of configuration vari-
ables usable in initialization files".

If a file is specified without an extension, then the ".tex" extension is automatically added, just as
LaTeX does. Thus, if you specify:

latexmk foo

then latexmk will operate on the file "foo.tex".

There are certain restrictions on what characters can be in a filename; certain characters are either
prohibited or problematic for the latex etc programs. These characters are: "$", "%", "\", "˜", the
double quote character, and the control characters null, tab, form feed, carriage return, line feed,
and delete. In addition "&" is prohibited when it is the first character of a filename.

Latexmk gives a fatal error when it detects any of the above characters in the TeX filename(s) spec-
ified on the command line. However before testing for illegal characters, latexmk removes match-
ing pairs of double quotes from a filename. This matches the behavior of latex etc, and deals with
problems that occasionally result from filenames that have been incorrectly quoted on the com-
mand line. In addition, under Microsoft Windows, the forward slash character "\" is a directory

27 December 2024 2

LATEXMK (1) General Commands Manual LATEXMK (1)

separator, so latexmk replaces it by a forward slash "/", which is also a legal directory separator in
Windows, and is accepted by latex etc.

-auxdir=FOO or -aux-directory=FOO
Sets the directory for auxiliary output files of *latex (.aux, .log etc). These are all the generated
files, with the exception of final output files (.dvi, .ps, .pdf, .synctex.gz, .synctex). See the -out-
dir/-output-directory option for directories for the main output files, and the -out2dir option for
the final output files.

If the directory specified for the -aux/-aux-directory option is blank, then the default is used,
which is to be the same as the output directory.

If you also use the -cd option, and the specified auxiliary output directory is a relative path, then
the path is interpreted relative to the document directory.

See the section AUXILIARY AND OUTPUT DIRECTORIES for more details.

-bibtex When the source file uses bbl files for bibliography, run bibtex or biber as needed to regenerate the
bbl files.

This property can also be configured by setting the $bibtex_use variable to 2 in a configuration file.

-bibtex-
Never run bibtex or biber. Also, always treat .bbl files as precious, i.e., do not delete them in a
cleanup operation.

A common use for this option is when a document comes from an external source, complete with
its bbl file(s), and the user does not have the corresponding bib files available. In this situation use
of the -bibtex- option will prevent latexmk from trying to run bibtex or biber, which would result
in overwriting of the bbl files.

This property can also be configured by setting the $bibtex_use variable to 0 in a configuration file.

-bibtex-cond
When the source file uses a bbl file for the bibliography and bibtex is used to generate the bibliog-
raphy, run bibtex as needed to regenerate the bbl files only if the relevant bib file(s) exist. Thus
when the bib file(s) are not available, bibtex is not run, thereby avoiding overwriting of the bbl file.
Also, always treat .bbl files as precious, i.e., do not delete them in a cleanup operation.

This is the default setting. It can also be configured by setting the $bibtex_use variable to 1 in a
configuration file.

The reason for using this setting is first to allow automatic switching between the use and non-use
of bibtex depending on the existence or not of a bib file. In addition, when submitting articles to a
scientific journal, it is common to submit only .tex and .bbl files (plus graphics files), but not a .bib
file. Hence it is often useful to treat .bbl files as true source files, that should be preserved under a
clean up operation.

This property can also be configured by setting the $bibtex_use variable to 1 in a configuration file.

Note that when biber is used, and a bib file doesn’t exist, this option does not prevent biber from
being run, with the bbl file then being incorrect. See the documentation on $bibtex_use for more
details. However, a bbl file is treated as precious in a clean up operation.

27 December 2024 3

LATEXMK (1) General Commands Manual LATEXMK (1)

-bibtex-cond1
The same as -bibtex-cond except that .bbl files are only treated as precious if one or more bibfiles
fails to exist.

Thus if all the bib files exist, bibtex is run to generate .bbl files as needed, and then it is appropriate
to delete the bbl files in a cleanup operation since they can be re-generated.

This property can also be configured by setting the $bibtex_use variable to 1.5 in a configuration
file.

Note that when biber is used, and a bib file doesn’t exist, this option does not prevent biber from
being run, with the bbl file then being incorrect. See the documentation on $bibtex_use for more
details. However, a bbl file is treated as precious in a clean up operation.

-bibtexfudge or -bibfudge
Turn on the change-directory fudge for bibtex. See documentation of $bibtex_fudge for details.

-bibtexfudge- or -bibfudge-
Turn off the change-directory fudge for bibtex. See documentation of $bibtex_fudge for details.

-bm <message>
A banner message to print diagonally across each page when converting the dvi file to postscript.
The message must be a single argument on the command line so be careful with quoting spaces
and such.

Note that if the -bm option is specified, the -ps option is assumed.

-bi <intensity>
How dark to print the banner message. A decimal number between 0 and 1. 0 is black and 1 is
white. The default is 0.95, which is OK unless your toner cartridge is getting low.

-bs <scale>
A decimal number that specifies how large the banner message will be printed. Experimentation is
necessary to get the right scale for your message, as a rule of thumb the scale should be about
equal to 1100 divided by the number of characters in the message. The default is 220.0 which is
just right for 5 character messages.

-commands
List the commands used by latexmk for processing files, and then exit.

-c Clean up (remove) all regeneratable files generated by latex and bibtex or biber except dvi, post-
script and pdf. These files are a combination of log files, aux files, latexmk’s database file of
source file information, and those with extensions specified in the @generated_exts configuration
variable. In addition, files specified by the $clean_ext and @generated_exts configuration vari-
ables are removed.

This cleanup is instead of a regular make. See the -gg option if you want to do a cleanup followed
by a make.

Treatment of .bbl files: If $bibtex_use is set to 0 or 1, bbl files are always treated as non-regenerat-
able. If $bibtex_use is set to 1.5, bbl files are counted as non-regeneratable conditionally: If the
bib file exists, then bbl files are regeneratable, and are deleted in a clean up. But if $bibtex_use is

27 December 2024 4

LATEXMK (1) General Commands Manual LATEXMK (1)

1.5 and a bib file doesn’t exist, then the bbl files are treated as non-regeneratable and hence are not
deleted.

In contrast, if $bibtex_use is set to 2, bbl files are always treated as regeneratable, and are deleted
in a cleanup.

Treatment of files generated by custom dependencies: If $cleanup_includes_cusdep_generated is
nonzero, regeneratable files are considered as including those generated by custom dependencies
and are also deleted. Otherwise these files are not deleted.

-C Clean up (remove) all regeneratable files generated by latex and bibtex or biber. This is the same
as the -c option with the addition of dvi, postscript and pdf files, and those specified in the
$clean_full_ext configuration variable.

This cleanup is instead of a regular make. See the -gg option if you want to do a cleanup followed
by a make.

See the -c option for the specification of whether or not .bbl files are treated as non-regeneratable
or regeneratable.

If $cleanup_includes_cusdep_generated is nonzero, regeneratable files are considered as including
those generated by custom dependencies and are also deleted. Otherwise these files are not
deleted.

-CA (Obsolete). Now equivalent to the -C option. See that option for details.

-cd Change to the directory containing the main source file before processing it. Then all the gener-
ated files (.aux, .log, .dvi, .pdf, etc) will be relative to the source file.

This option is particularly useful when latexmk is invoked from a GUI configured to invoke la-
texmk with a full pathname for the source file.

This option works by setting the $do_cd configuration variable to one; you can set that variable if
you want to configure latexmk to have the effect of the -cd option without specifying it on the
command line. See the documentation for that variable.

-cd- Do NOT change to the directory containing the main source file before processing it. Then all the
generated files (.aux, .log, .dvi, .pdf, etc) will be relative to the current directory rather than the
source file.

This is the default behavior and corresponds to the behavior of the *latex programs. However, it is
not desirable behavior when latexmk is invoked by a GUI configured to invoke latexmk with a full
pathname for the source file. See the -cd option.

This option works by setting the $do_cd configuration variable to zero. See the documentation for
that variable for more information.

-CF Remove the file containing the database of source file information, before doing the other actions
requested.

27 December 2024 5

LATEXMK (1) General Commands Manual LATEXMK (1)

-d Set draft mode. This prints the banner message "DRAFT" across your page when converting the
dvi file to postscript. Size and intensity can be modified with the -bs and -bi options. The -bm
option will override this option as this is really just a short way of specifying:

latexmk -bm DRAFT

Note that if the -d option is specified, the -ps option is assumed.

-deps Show a list of dependent files after processing. This is in the form of a dependency list of the form
used by the make program, and it is therefore suitable for use in a Makefile. It gives an overall
view of the files without listing intermediate files, as well as latexmk can determine them.

By default the list of dependent files is sent to stdout (i.e., normally to the screen unless you’ve
redirected latexmk’s output). But you can set the filename where the list is sent by the -deps-out=
option.

See the section "USING latexmk WITH make" for an example of how to use a dependency list
with make.

Users familiar with GNU automake and gcc will find that the -deps option is very similar in its
purpose and results to the -M option to gcc. (In fact, latexmk also has options -M, -MF, and -MP
options that behave like those of gcc.)

-dependents
Equivalent to -deps.

-deps- Do not show a list of dependent files after processing. (This is the default.)

-dependents-
Equivalent to -deps-.

-deps-escape=<string>
Set the kind of escaping used for spaces in the dependency list. The possible values are "none",
"unix", "nmake", corresponding respectively to no escaping, escaping with a "\" suitable for stan-
dard Unix make, and escaping with "ˆ", suitable for Microsoft’s nmake.

-deps-out=FILENAME
Set the filename to which the list of dependent files is written. If the FILENAME argument is
omitted or set to "-", then the output is sent to stdout.

Use of this option also turns on the output of the list of dependent files after processing.

-dF Dvi file filtering. The argument to this option is a filter which will generate a filtered dvi file with
the extension ".dviF". All extra processing (e.g. conversion to postscript, preview, printing) will
then be performed on this filtered dvi file.

Example usage: To use dviselect to select only the even pages of the dvi file:

latexmk -dF "dviselect even" foo.tex

27 December 2024 6

LATEXMK (1) General Commands Manual LATEXMK (1)

-diagnostics
Print detailed diagnostics during a run. This may help for debugging problems or to understand
latexmk’s behavior in difficult situations.

-dir-report
For each .tex file processed, list the settings for aux and out directories, after they have been nor-
malized from the settings specified during initialization. See the description of the variable
$aux_out_dir_report for more details.

-dir-report-
Do not report the settings for aux and out directories. (Default)

-dir-report-only
After all initialization is complete, give the settings for the aux and out directories, and then halt.
This option is primarily used for debugging configuration issues.

-dvi Generate dvi version of document using latex. (And turn off any incompatible requests.)

-dvilua Generate dvi version of document using lualatex instead of latex. (And turn off any incompatible
requests.)

-dvi- Turn off generation of dvi version of document. (This may get overridden, if some other file is
made (e.g., a .ps file) that is generated from the dvi file, or if no generated file at all is requested.)

-dvilualatex="COMMAND"
This sets the string specifying the command to run dvi lualatex. It behaves like the -pdflatex op-
tion, but sets the variable $dvilualatex.

Note: This option when provided with the COMMAND argument only sets the command for invok-
ing dvilualatex; it does not turn on the use of dvilualatex. That is done by other options or in an
initialization file.

-e <code>
Execute the specified initialization code before processing. The code is Perl code of the same
form as is used in latexmk’s initialization files. For more details, see the information on the -r op-
tion, and the section about "Configuration/initialization (RC) files". The code is typically a se-
quence of assignment statements separated by semicolons.

The code is executed when the -e option is encountered during latexmk’s parsing of its command
line. See the -r option for a way of executing initialization code from a file. An error results in la-
texmk stopping. Multiple instances of the -r and -e options can be used, and they are executed in
the order they appear on the command line.

Some care is needed to deal with proper quoting of special characters in the code on the command
line. For example, suppose you want to set the latex command to use its -shell-escape option, then
under UNIX/Linux you could use the line

latexmk -e ’$latex=q/latex %O -shell-escape %S/’ file.tex

Note that the single quotes block normal UNIX/Linux command shells from treating the charac-
ters inside the quotes as special. (In this example, the q/.../ construct is a Perl idiom equivalent to

27 December 2024 7

LATEXMK (1) General Commands Manual LATEXMK (1)

using single quotes. This avoids the complications of getting a quote character inside an already
quoted string in a way that is independent of both the shell and the operating-system.)

The above command line will NOT work under MS-Windows with cmd.exe or command.com or
4nt.exe. For MS-Windows with these command shells you could use

latexmk -e "$latex=q/latex %O -shell-escape %S/" file.tex

or

latexmk -e "$latex=’latex %O -shell-escape %S’" file.tex

The last two examples will NOT work with UNIX/Linux command shells.

(Note: the above examples show are to show how to use the -e to specify initialization code to be
executed. But the particular effect can be achieved also by the use of the -latex option with less
problems in dealing with quoting.)

-emulate-aux-dir
Emulate the use of an aux directory instead of leaving it to the *latex programs to do it. (MiKTeX
supports -aux-directory, but TeXLive doesn’t.)

See the section AUXILIARY AND OUTPUT DIRECTORIES for more details.

-emulate-aux-dir-
Turn off emulation to implement an aux directory and leave it to the *latex program to handle the
case that the aux directory is different from the output directory. Note that if you use TeXLive,
which doesn’t support -aux-directory, latexmk will automatically switch aux_dir emulation on af-
ter the first run of *latex, because it will find the .log file in the wrong place.

-f Force latexmk to continue document processing despite errors. Normally, when latexmk detects
that LaTeX or another program has found an error which will not be resolved by further process-
ing, no further processing is carried out.

Note: "Further processing" means the running of other programs or the rerunning of latex (etc) that
would be done if no errors had occurred. If instead, or additionally, you want the latex (etc) pro-
gram not to pause for user input after an error, you should arrange this by an option that is passed
to the program, e.g., by latexmk’s option -interaction=nonstopmode (which latexmk passes to
*latex).

-f- Turn off the forced processing-past-errors such as is set by the -f option. This could be used to
override a setting in a configuration file.

-g Force latexmk to process document fully, even under situations where latexmk would normally de-
cide that no changes in the source files have occurred since the previous run. This option is useful,
for example, if you change some options and wish to reprocess the files.

-g- Turn off -g.

-gg "Super go mode" or "clean make": clean out generated files as if -C had been given, and then do a
regular make.

27 December 2024 8

LATEXMK (1) General Commands Manual LATEXMK (1)

-h or-non-help
Print help information.

-hnt Generate hnt (HINT) version of document using hilatex. (And turn off any incompatible requests.)

-jobname=STRING
Set the basename of output files(s) to STRING, instead of the default, which is the basename of
the specified TeX file. (At present, STRING should not contain spaces.)

This is like the same option for current implementations of the *latex, and the passing of this op-
tion to these programs is part of latexmk’s implementation of -jobname.

There is one enhancement, that the STRING may contain the placeholder ’%A’. This will be sub-
stituted by the basename of the TeX file. The primary purpose is when multiple files are specified
on the command line to latexmk, and you wish to use a jobname with a different file-dependent
value for each file. For example, suppose you had .tex files test1.tex and test2.tex, and you wished
to compare the results of compilation by *latex and those with xelatex. Then under a unix-type
operating system you could use the command line

latexmk -pdf -jobname=%A-pdflatex *.tex
latexmk -pdfxe -jobname=%A-xelatex *.tex

Then the .aux, .log, and .pdf files from the use of pdflatex would have basenames test1-pdflatex
and test2-pdflatex, while from xelatex, the basenames would be test1-xelatex and test2-xelatex.

Under MS-Windows with cmd.exe, you would need to double the percent sign, so that the percent
character is passed to latexmk rather than being used to substitute an environment variable:

latexmk -pdf -jobname=%%A-pdflatex *.tex
latexmk -pdfxe -jobname=%%A-xelatex *.tex

-l Run in landscape mode, using the landscape mode for the previewers and the dvi to postscript con-
verters. This option is not normally needed nowadays, since current previewers normally deter-
mine this information automatically.

-l- Turn off -l.

-latex This sets the generation of dvi files by latex, and turns off the generation of pdf and ps files.

Note: to set the command used when latex is specified, see the -latex="COMMAND" option.

-latex="COMMAND"
This sets the string specifying the command to run latex, and is typically used to add desired op-
tions. Since the string normally contains spaces, it should be quoted, e.g.,

latexmk -latex="latex --shell-escape %O %S" foo.tex

The specification of the contents of the string are the same as for the $latex configuration variable.
Depending on your operating system and the command-line shell you are using, you may need to
change the single quotes to double quotes (or something else).

Note: This option when provided with the COMMAND argument only sets the command for

27 December 2024 9

LATEXMK (1) General Commands Manual LATEXMK (1)

invoking latex; it does not turn on the use of latex. That is done by other options or in an initializa-
tion file.

To set the command for running pdflatex (rather than the command for latex) see the -pdflatex op-
tion.

-logfilewarninglist
-logfilewarnings After a run of *latex, give a list of warnings about undefined citations and refer-
ences (unless silent mode is on).

See also the $silence_logfile_warnings configuration variable.

-logfilewarninglist-
-logfilewarnings- After a run of *latex, do not give a list of warnings about undefined citations
and references. (Default)

See also the $silence_logfile_warnings configuration variable.

-lualatex
Use lualatex. That is, use lualatex to process the source file(s) to pdf. The generation of dvi, hnt,
postscript and xdv files is turned off.

This option is equivalent to using the following set of options

-pdflua -dvi- -ps-

(Note: Note that the method of implementation of this option, but not its intended effect, differ
from some earlier versions of latexmk.)

-lualatex="COMMAND"
This sets the string specifying the command to run lualatex. It behaves like the -pdflatex option,
but sets the variable $lualatex.

Note: This option when provided with the COMMAND argument only sets the command for invok-
ing lualatex; it does not turn on the use of lualatex. That is done by other options or in an initial-
ization file.

-M Show list of dependent files after processing. This is equivalent to the -deps option.

-MF file
If a list of dependents is made, the -MF specifies the file to write it to.

-MP If a list of dependents is made, include a phony target for each source file. If you use the depen-
dents list in a Makefile, the dummy rules work around errors the program make gives if you re-
move header files without updating the Makefile to match.

-makeindexfudge
Turn on the change-directory fudge for makeindex. See documentation of $makeindex_fudge for
details.

27 December 2024 10

LATEXMK (1) General Commands Manual LATEXMK (1)

-makeindexfudge-
Turn off the change-directory fudge for makeindex. See documentation of $makeindex_fudge for
details.

$min_sleep_time [0.01]
This is the minimum nonzero value allowed for $sleep_time.

-MSWinBackSlash
This option only has an effect when latexmk is running under MS-Windows. This is that when la-
texmk runs a command under MS-Windows, the Windows standard directory separator "\" is used
to separate directory components in a file name. Internally, latexmk uses "/" for the directory sepa-
rator character, which is the character used by Unix-like systems.

This is the default behavior. However the default may have been overridden by a configuration file
(latexmkrc file) which sets $MSWin_back_slash=0.

-MSWinBackSlash-
This option only has an effect when latexmk is running under MS-Windows. This is that when la-
texmk runs a command under MS-Windows, the substitution of "\" for the separator character be-
tween directory components of a file name is not done. Instead the forward slash "/" is used, the
same as on Unix-like systems. This is acceptable in most situations under MS-Windows, provided
that filenames are properly quoted, as latexmk does by default.

See the documentation for the configuration variable $MSWin_back_slash for more details.

-new-viewer
When in continuous-preview mode, always start a new viewer to view the generated file. By de-
fault, latexmk will, in continuous-preview mode, test for a previously running previewer for the
same file and not start a new one if a previous previewer is running. However, its test sometimes
fails (notably if there is an already-running previewer that is viewing a file of the same name as the
current file, but in a different directory). This option turns off the default behavior.

-new-viewer-
The inverse of the -new-viewer option. It puts latexmk in its normal behavior that in preview-con-
tinuous mode it checks for an already-running previewer.

-nobibtex
Never run bibtex or biber. Equivalent to the -bibtex- option.

-nobibtexfudge or -nobibfudge
Turn off the change-directory fudge for bibtex. See documentation of $bibtex_fudge for details.

-noemulate-aux-dir
Turn aux_dir emulation off. Same as -emulate-aux-dir-.

-nomakeindexfudge
Turn off the change-directory fudge for makeindex. See documentation of $makeindex_fudge for
details.

27 December 2024 11

LATEXMK (1) General Commands Manual LATEXMK (1)

-norc Turn off the automatic reading of initialization (rc) files.

N.B. Normally the initialization files are read and obeyed, and then command line options are
obeyed in the order they are encountered. But -norc is an exception to this rule: it is acted on first,
no matter where it occurs on the command line.

-outdir=FOO or -output-directory=FOO

Sets the directory for the output files of *latex.

If the aux directory is not set or is the same as the output directory, then all output files of *latex
are sent to the output directory.

If the aux directory is set, e.g., by the option -auxdir, and is not equal to the output directory, then
only the primary output files (.dvi, .ps, .pdf, .synctex, .synctex.gz) are sent to the output directory.
Other generated files are sent to the aux directory.

See the section AUXILIARY AND OUTPUT DIRECTORIES for more details.

-out2dir=FOO

(Experimental new feature.)

Sets the directory for the final output files of a whole round of compilations.

The use of this directory solves, among other things, the problem that when multiple runs of *latex
and other programs are needed, files like the main pdf file from pdflatex, etc will be changed mul-
tiple times. A viewer like SumatraPDF that reloads the file whenever it detects changes will show
a distracting sequence of intermediate states of the pdf file, rather than just the final version after
all the repeated runs of *latex etc have been done. Instead, when a distinct final-output directory is
set, by the -out2dir option or the equivalent $out2_dir variable is set, the viewer will only see a
changed pdf (etc) file after full sequence of repeated runs of *latex etc has finished.

By default the final output directory is the same as the output directory (as specified by the -outdir
option or the setting of the variable $out_dir configuration variable).

-output-format=FORMAT
This option is one that is allowed for latex, lualatex, and pdflatex. But it is not passed to these pro-
grams. Instead latexmk emulates it in a way suitable for the context of latexmk and its workflows.

-If FORMAT is dvi, then dvi output is turned on, and postscript, pdf and xdv output are turned off.
This is equivalent to using the options -dvi -ps- -pdf- -xdv-.

If FORMAT is pdf, then pdf output is turned on, and dvi, postscript and xdv output are turned off.
This is equivalent to using the options -pdf -ps- -dvi- -xdv-.

If FORMAT is anything else, latexmk gives an error.

-p Print out the document. By default the file to be printed is the first in the list postscript, pdf, dvi
that is being made. But you can use the -print=... option to change the type of file to be printed,
and you can configure this in a start up file (by setting the $print_type variable).

27 December 2024 12

LATEXMK (1) General Commands Manual LATEXMK (1)

However, printing is enabled by default only under UNIX/Linux systems, where the default is to
use the lpr command and only on postscript files. In general, the correct behavior for printing very
much depends on your system’s software. In particular, under MS-Windows you must have suit-
able program(s) available, and you must have configured the print commands used by latexmk.
This can be non-trivial. See the documentation on the $lpr, $lpr_dvi, and $lpr_pdf configuration
variables to see how to set the commands for printing.

This option is incompatible with the -pv and -pvc options, so it turns them off.

-pdf Generate pdf version of document using pdflatex. (And turn off any incompatible requests.)

(If you wish to use lualatex or xelatex, you can use whichever of the options -pdflua, -pdfxe, -lu-
alatex or -xelatex applies.) To configure latexmk to have such behavior by default, see the section
on "Configuration/initialization (rc) files".

-pdfdvi
Generate dvi file and then pdf version of document from the dvi file, by default using dvipdf.
(And turn off any incompatible requests.)

The program used to compile the document to dvi is latex by default, but this can be changed to
dvilulatex by the use of the -dvilua option or by setting $dvi_mode to 2.

-pdflua Generate pdf version of document using lualatex. (And turn off any incompatible requests.)

-pdfps Generate dvi file, ps file from the dvi file, and then pdf file from the ps file. (And turn off any in-
compatible requests.)

The program used to compile the document to dvi is latex by default, but this can be changed to
dvilulatex by the use of the -dvilua option or by setting $dvi_mode to 2.

-pdfxe Generate pdf version of document using xelatex. (And turn off any incompatible requests.)

Note that to optimize processing time, latexmk uses xelatex to generate an .xdv file rather than a
pdf file directly. Only after possibly multiple runs to generate a fully up-to-date .xdv file does la-
texmk then call xdvipdfmx to generate the final .pdf file.

(Note: The reason why latexmk arranges for xelatex to make an .xdv file instead of the xelatex’s
default of a .pdf file is as follows: When the document includes large graphics files, especially .png
files, the production of a .pdf file can be quite time consuming, even when the creation of the .xdv
file by xelatex is fast. So the use of the intermediate .xdv file can result in substantial gains in pro-
cesing time, since the .pdf file is produced once rather than on every run of xelatex.)

-pdf- Turn off generation of pdf version of document. (This can be used to override a setting in a con-
figuration file. It may get overridden if some other option requires the generation of a pdf file.)

If after all options have been processed, pdf generation is still turned off, then generation of a dvi
file will be turned on, and then the program used to compiled a document will be latex (or, more
precisely, whatever program is configured to be used in the $latex configuration variable).

-pdflatex
Set the generation of pdf files by pdflatex. (And turn off any incompatible requests.)

27 December 2024 13

LATEXMK (1) General Commands Manual LATEXMK (1)

Note: to set the command used when pdflatex is specified, see the -pdflatex="COMMAND" op-
tion.

-pdflatex="COMMAND"
This sets the string specifying the command to run pdflatex, and is typically used to add desired
options. Since the string normally contains spaces, it should be quoted, e.g.,

latexmk -pdf -pdflatex="pdflatex --shell-escape %O %S" foo.tex

The specification of the contents of the string are the same as for the $pdflatex configuration vari-
able. (The option -pdflatex in fact sets the variable $pdflatex.) Depending on your operating sys-
tem and the command-line shell you are using, you may need to change the single quotes to dou-
ble quotes (or something else).

Note: This option when provided with the COMMAND argument only sets the command for invok-
ing pdflatex; it does not turn on the use of pdflatex. That is done by other options or in an initial-
ization file.

To set the command for running latex (rather than the command for pdflatex) see the -latex option.

-pdflualatex="COMMAND"
Equivalent to -lualatex="COMMAND".

-pdfxelatex="COMMAND"
Equivalent to -xelatex="COMMAND".

-pretex=CODE

Given that CODE is some TeX code, this options sets that code to be executed before inputting
source file. This only works if the command for invoking the relevant *latex is suitably config-
ured. See the documentation of the variable $pre_tex_code, and the substitution strings %P and
%U for more details. This option works by setting the variable $pre_tex_code.

See also the -usepretex option.

An example:

latexmk -pretex=’\AtBeginDocument{Message\par}’ -usepretex foo.tex

But this is better written

latexmk -usepretex=’\AtBeginDocument{Message\par}’ foo.tex

If you already have a suitable command configured, you only need

latexmk -pretex=’\AtBeginDocument{Message\par}’ foo.tex

-print=dvi, -print=ps, -print=pdf, -print=auto,
Define which kind of file is printed. This option also ensures that the requisite file is made, and
turns on printing.

The (default) case -print=auto determines the kind of print file automatically from the set of files

27 December 2024 14

LATEXMK (1) General Commands Manual LATEXMK (1)

that is being made. The first in the list postscript, pdf, dvi that is among the files to be made is the
one used for print out.

-ps Generate postscript version of document. (And turn off any incompatible requests.)

-ps- Turn off generation of postscript version of document. This can be used to override a setting in a
configuration file. (It may get overridden by some other option that requires a postscript file, for
example a request for printing.)

-pF Postscript file filtering. The argument to this option is a filter which will generate a filtered post-
script file with the extension ".psF". All extra processing (e.g. preview, printing) will then be per-
formed on this filtered postscript file.

Example of usage: Use psnup to print two pages on the one page:

latexmk -ps -pF ’psnup -2’ foo.tex

or

latexmk -ps -pF "psnup -2" foo.tex

Whether to use single or double quotes round the "psnup -2" will depend on your command inter-
preter, as used by the particular version of perl and the operating system on your computer.

-pv Run file previewer. If the -view option is used, that will select the kind of file to be previewed
(.pdf, .ps or .dvi). Otherwise the viewer views the "highest" kind of output file that is made, with
the ordering being .pdf, .ps, .dvi (high to low). This option is incompatible with the -p and -pvc
options, so it turns them off.

-pv- Turn off -pv.

-pvc Run a file previewer and continually update the .dvi, .ps, and/or .pdf files whenever changes are
made to source files (see the Description above). Which of these files is generated and which is
viewed is governed by the other options, and is the same as for the -pv option. The preview-con-
tinuous option -pvc can only work with one file. So in this case you will normally only specify
one filename on the command line. It is also incompatible with the -p and -pv options, so it turns
these options off.

The -pvc option also turns off force mode (-f), as is normally best for continuous preview mode.
If you really want force mode, use the options in the order -pvc -f.

With a good previewer the display will be automatically updated. (Under some but not all ver-
sions of UNIX/Linux "gv -watch" does this for postscript files; this can be set by a configuration
variable. This would also work for pdf files except for an apparent bug in gv that causes an error
when the newly updated pdf file is read.) Many other previewers will need a manual update.

Important note: the acroread program on MS-Windows locks the pdf file, and prevents new ver-
sions being written, so it is a bad idea to use acroread to view pdf files in preview-continuous
mode. It is better to use a different viewer: SumatraPDF and gsview are good possibilities.

There are some other methods for arranging an update, notably useful for many versions of xdvi
and xpdf. These are best set in latexmk’s configuration; see below.

27 December 2024 15

LATEXMK (1) General Commands Manual LATEXMK (1)

Note that if latexmk dies or is stopped by the user, the "forked" previewer will continue to run.
Successive invocations with the -pvc option will not fork new previewers, but latexmk will nor-
mally use the existing previewer. (At least this will happen when latexmk is running under an op-
erating system where it knows how to determine whether an existing previewer is running.)

-pvc- Turn off -pvc.

-pvctimeout
Do timeout in pvc mode after period of inactivity, which is 30 min. by default. Inactivity means a
period when latexmk has detected no file changes and hence has not taken any actions like compil-
ing the document.

-pvctimeout-
Don’t do timeout in pvc mode after inactivity.

-pvctimeoutmins=<time>
Set period of inactivity in minutes for pvc timeout.

-quiet Same as -silent

-r <rcfile>
Read the specified initialization file ("RC file") before processing.

Be careful about the ordering: (1) Standard initialization files -- see the section below on "Configu-
ration/initialization (RC) files" -- are read first. (2) Then the options on the command line are
acted on in the order they are given. Therefore if an initialization file is specified by the -r option,
it is read during this second step. Thus an initialization file specified with the -r option can over-
ride both the standard initialization files and previously specified options. But all of these can be
overridden by later options.

The contents of the RC file just comprise a piece of code in the Perl programming language (typi-
cally a sequence of assignment statements); they are executed when the -r option is encountered
during latexmk’s parsing of its command line. See the -e option for a way of giving initialization
code directly on latexmk’s command line. An error results in latexmk stopping. Multiple instances
of the -r and -e options can be used, and they are executed in the order they appear on the com-
mand line.

-rc-report
After initialization, give a list of the RC files read. (Default)

-rc-report-
After initialization, do not give a list of the RC files read.

-recorder
Give the -recorder option with *latex. In (most) modern versions of these programs, this results in
a file of extension .fls containing a list of the files that these programs have read and written. La-
texmk will then use this file to improve its detection of source files and generated files after a run
of *latex. This is the default setting of latexmk, unless overridden in an initialization file.

For further information, see the documentation for the $recorder configuration variable.

27 December 2024 16

LATEXMK (1) General Commands Manual LATEXMK (1)

-recorder-
Do not supply the -recorder option with *latex.

-rules Show a list of latemk’s rules and dependencies after processing.

-rules- Do not show a list of latexmk’s rules and dependencies after processing. (This is the default.)

-showextraoptions
Show the list of extra *latex options that latexmk recognizes, but that it simply passes through to
the programs *latex when they are run. These options are (currently) a combination of those al-
lowed by the TeXLive and MiKTeX implementations. (If a particular option is given to latexmk
but is not handled by the particular implementation of *latex that is being used, that program will
probably give a warning or an error.) These options are very numerous, but are not listed in this
documentation because they have no effect on latexmk’s actions.

There are a few options (e.g., -includedirectory=dir, -initialize, -ini) that are not recognized, ei-
ther because they don’t fit with latexmk’s intended operations, or because they need special pro-
cessing by latexmk that isn’t implemented (at least, not yet).

There are certain options for *latex (e.g., -recorder) that trigger special actions or behavior by la-
texmk itself. Depending on the action, they may also be passed in some form to the called *latex
program, and/or may affect other programs as well. These options do have entries in this docu-
mentation. Among these options are: -jobname=STRING, -aux-directory=dir, -output-direc-
tory=DIR, -quiet, and -recorder.

There are also options that are accepted by *latex, but instead trigger actions purely by latexmk:
-help, -version.

-silent Run commands silently, i.e., with options that reduce the amount of diagnostics generated. For ex-
ample, with the default settings, the command "latex -interaction=batchmode" is used for latex,
and similarly for its friends.

See also the -logfilewarninglist and -logfilewarninglist- options.

Also reduce the number of informational messages that latexmk itself generates.

To change the options used to make the commands run silently, you need to configure latexmk
with changed values of its configuration variables, the relevant ones being $bibtex_silent_switch,
$biber_silent_switch, $dvipdf_silent_switch, $dvips_silent_switch, $dvilualatex_silent_switch, $la-
tex_silent_switch, $lualatex_silent_switch $makeindex_silent_switch, $pdflatex_silent_switch, and
$xelatex_silent_switch

-stdtexcmds
Sets the commands for latex, etc, so that they are the standard ones. This is useful to override spe-
cial configurations.

The result is that $latex = ’latex %O %S’, and similarly for $pdflatex, $lualatex, and $xelatex.
(The option -no-pdf needed for $xelatex is provided automatically, given that %O appears in the
definition.)

27 December 2024 17

LATEXMK (1) General Commands Manual LATEXMK (1)

-time Show time used. (On MS Windows, what is shown is clock time; on other systems CPU time.)
See also the configuration variable $show_time.

-time- Do not show time used. See also the configuration variable $show_time.

-use-make
When after a run of *latex, there are warnings about missing files (e.g., as requested by the LaTeX
\input, \include, and \includgraphics commands), latexmk tries to make them by a custom depen-
dency. If no relevant custom dependency with an appropriate source file is found, and if the -use-
make option is set, then as a last resort latexmk will try to use the make program to try to make the
missing files.

Note that the filename may be specified without an extension, e.g., by \includegraphics{drawing}
in a LaTeX file. In that case, latexmk will try making drawing.ext with ext set in turn to the possi-
ble extensions that are relevant for latex (or as appropriate pdflatex, lualatex, xelatex).

See also the documentation for the $use_make_for_missing_files configuration variable.

-use-make-
Do not use the make program to try to make missing files. (Default.)

-usepretex
Sets the command lines for latex, etc, so that they use the code that is defined by the variable
$pre_tex_code or that is set by the option -pretex=CODE to execute the specified TeX code be-
fore the source file is read. This option overrides any previous definition of the command lines.

The result is that $latex = ’latex %O %P’, and similarly for $pdflatex, $lualatex, and $xelatex.
(The option -no-pdf needed for $xelatex is provided automatically, given that %O appears in the
definition.)

-usepretex=CODE
Equivalent to -pretex=CODE -usepretex. Example

latexmk -usepretex=’\AtBeginDocument{Message\par}’ foo.tex

-v or -version
Print version number of latexmk.

-verbose
Opposite of -silent. This is the default setting.

-view=default, -view=dvi, -view=hnt, -view=ps, -view=pdf, -view=none
Set the kind of file used when previewing is requested (e.g., by the -pv or -pvc switches). The de-
fault is to view the "highest" kind of requested file (in the low-to-high order .dvi, .hnt, .ps, .pdf).

Note the possibility -view=none where no viewer is opened at all. One example of is use is in
conjunction with the -pvc option, when you want latexmk to do a compilation automatically when-
ever source file(s) change, but do not want a previewer to be opened.

27 December 2024 18

LATEXMK (1) General Commands Manual LATEXMK (1)

-Werror
This causes latexmk to return a non-zero status code if any of the files processed gives a warning
about problems with citations or references (i.e., undefined citations or references or about multi-
ply defined references). This is after latexmk has completed all the runs it needs to try and resolve
references and citations. Thus -Werror causes latexmk to treat such warnings as errors, but only
when they occur on the last run of *latex and only after processing is complete. Also can be set by
the configuration variable $warnings_as_errors.

-xdv Generate xdv version of document using xelatex. (And turn off any incompatible requests.)

-xelatex
Use xelatex. That is, use xelatex to process the source file(s). This will cause generation of a pdf
(but indirectly through a xdv file). (And turn off any incompatible requests.)

This option is equivalent to using the following option

-pdfxe

[Note: Note that the method of implementation of this option, but not its intended primary effect,
differ from some earlier versions of latexmk. Latexmk first uses xelatex to make an .xdv file, and
does all the extra runs needed (including those of bibtex, etc). Only after that does it make the pdf
file from the .xdv file, using xdvipdfmx. See the documentation for the -pdfxe for why this is
done.]

-xelatex="COMMAND"
This sets the string specifying the command to run xelatex. It sets the variable $xelatex.

Warning: It is important to ensure that the -no-pdf is used when xelatex is invoked, since latexmk
expects xelatex to produce an .xdv file, not a .pdf file. If you provide %O in the command specifi-
cation, this will be done automatically. See the documentation for the -pdfxe option for why la-
texmk makes a .xdv file rather than a .pdf file when xelatex is used.

An example of the use of the -xelatex option:

latexmk -pdfxe -xelatex="xelatex --shell-escape %O %S" foo.tex

Note: This option when provided with the COMMAND argument only sets the command for invok-
ing xelatex; it does not turn on the use of lualatex. That is done by other options or in an initializa-
tion file.

Compatibility between options

The preview-continuous option -pvc can only work with one file. So in this case you will normally only
specify one filename on the command line.

Options -p, -pv and -pvc are mutually exclusive. So each of these options turns the others off.

EXAMPLES
% latexmk thesis # run latex enough times to resolve

cross-references

% latexmk -pvc -ps thesis # run latex enough times to resolve
cross-references, make a postscript

27 December 2024 19

LATEXMK (1) General Commands Manual LATEXMK (1)

file, start a previewer. Then
watch for changes in the source
file thesis.tex and any files it
uses. After any changes rerun latex
the appropriate number of times and
remake the postscript file. If latex
encounters an error, latexmk will
keep running, watching for
source file changes.

% latexmk -c # remove .aux, .log, .bbl, .blg, .dvi,
.pdf, .ps & .bbl files

DEALING WITH ERRORS, PROBLEMS, ETC
Some possibilities:

a. If you get a strange error, do look carefully at the output that is on the screen and in log files. While
there is much that is notoriously verbose in the output of latex (and that is added to by latexmk), the ver-
bosity is there for a reason: to enable the user to diagnose problems. Latexmk does repeat some messages at
the end of a run that it thinks would otherwise be easy to miss in the middle of other output.

b. Generally, remember that latexmk does its work by running other programs. Your first priority in dealing
with errors should be to examine what went wrong with the individual programs. Then you need to correct
the causes of errors in the runs of these programs. (Often these come from errors in the source document,
but they could also be about missing LaTeX packages, etc.)

c. If latexmk doesn’t run the programs the way you would like, then you need to look in this documentation
at the list of command line options and then at the sections on configuration/initialization files. A lot of la-
texmk’s behavior is configurable to deal with particular situations. (But there is a lot of reading!)

The remainder of these notes consists of ideas for dealing with more difficult situations.

d. Further tricks can involve replacing the standard commands that latexmk runs by other commands or
scripts.

e. For possible examples of code for use in an RC file, see the directory example_rcfiles in the distribution
of latexmk (e.g., at http://mirror.ctan.org/support/latexmk/example_rcfiles). Even if these examples don’t
do what you want, they may provide suitable inspiration.

f. There’s a useful trick that can be used when you use lualatex instead of pdflatex (and in some related situ-
ations). The problem is that latexmk won’t notice a dependency on a file, bar.baz say, that is input by the
lua code in your document instead of by the LaTeX part. (Thus if you change bar.baz and rerun latexmk,
then latexmk will think no files have changed and not rerun lualatex, whereas if you had ’\input{bar.baz}’
in the LaTeX part of the document, latexmk would notice the change.) One solution is just to put the fol-
lowing somewhere in the LaTeX part of the document:

\typeout{(bar.baz)}

This puts a line in the log file that latexmk will treat as implying that the file bar.baz was read. (At present I
don’t know a way of doing this automatically.) Of course, if the file has a different name, change bar.baz to
the name of your file.

g. See also the section "Advanced Configuration: Some extra resources".

27 December 2024 20

LATEXMK (1) General Commands Manual LATEXMK (1)

h. Look on tex.stackexchange, i.e., at http://tex.stackexchange.com/questions/tagged/latexmk Someone
may have already solved your problem.

i. Ask a question at tex.stackexchange.com.

j. Or ask me (the author of latexmk). My e-mail is at the end of this documentation.

AUXILIARY AND OUTPUT DIRECTORIES
Running *latex and the associated programs generate a number of files, it is often convenient to arrange for
the generated files to be in a different directory than the source file(s) of a document. For our purposes
here, we identify two classes of generated file.

One class is what one may term the final output files, for example, the .pdf file generated by running pdfla-
tex, or the .dvi file from latex. Also in this class is the ps file generated by applying dvips to a .dvi file.
There are also .synctec or .synctex.gz files that can be used by programs that display .pdf files and the like
to relate positions in them to positions in source files.

The second class of file is composed of all other generated files: These include notably .aux files that are
used for implementing cross referencing, and are both generated on one run and read on a later run. Many
packages generate yet more such intermediate files, as well as programs like bibtex, makeindex, etc. There
are also .log files from *latex and corresponding files from other programs.

Let us use the term "output directory" for the directory that receives the final output files, and "aux direc-
tory" for the directory for the other generated files. If no special options are provided to the *latex pro-
grams, these directories default to the current directory, and then the generated files aren’t segregated. If
the two directories are the same, as is the simplest situation, then all generated files are written to the same
directory, and one often simply refers to the output directory, without mentioning a separate aux directory.

Support for them is provided for them in the *latex programs: by the single option -output-directory for
the TeXLive implementations, and by the options -aux-directory and -output-directory for the MiKTeX
implementations. Special support like this is needed for two reasons: First is that there are many packages
that write files and it needs to be arranged that these are automatically written to the appropriate directory
without any rewriting of the packages’ code. Second is that the files are often read in again on subsequent
runs of *latex, and it is necessary that the program knows where to find the files.

A complication is that the TeXLive implementation does not allow for separate aux and output directories.
Latexmk deals with this by being able to emulating a separate aux directory: In this method it invokes *la-
tex with just an -output-directory option, with the directory set not to the desired output directory, but to
the aux directory. After running *latex, it moves the relevant final output file(s) to the intended output di-
rectory. Emulation can be turned on by setting the configuration variable $emulate_aux to one in a configu-
ration file or by using latexmk’s -emulate-aux-dir option. The emulation method works equally well if
MiKTeX is used.

Latexmk also turns emulation on if it is found to be needed, as follows. Suppose emulation is initially off,
but the aux and output directories are different. Then latexmk invokes *latex with an -aux-directory option
and after the run finds that it hasn’t been obeyed, notably because the .log file is in the output directory
rather than the aux directory. Latexmk then sets emulation on, and retries. Conceivably, it could move all
the appropriate generated files from the output directory to the aux directory; but there is such a large vari-
ety of possibilities for these files that this is hard to identify all of them reliably except for simple cases.

Note that the emulation issue only arises when the user has arranged for the the aux and output directories
to be different. When instead they are equal, e.g., because the user only set the $out_dir variable, then la-
texmk invokes *latex with only an -output-directory option, which works as intended with both TeXLive

27 December 2024 21

LATEXMK (1) General Commands Manual LATEXMK (1)

and MiKTeX.

In addition, latexmk arranges the invocations of any auxiliary programs like bibtex and makeindex so that
they will read and write the relevant files from and to the aux directory. Programs like dvips, dvipdf,
ps2pdf, and xdvipdfmx are invoked so that they read from the appropriate places and write their output to
the output directory.

Files considered as final output files, i.e., those that belong in the output directory rather than the aux di-
rectory: These have the extensions .dvi, .ps., .pdf, .synctex, and .synctex.gz. A special case, because of
compatibility issues, is of .fls files: See below.

Note that xelatex when invoked with its -no-pdf option, as latexmk does, generates an .xdv file, which
would appear to have the same status as a .dvi file generated by latex. Nevertheless, latexmk treats .xdv as
an intermediate file that is found in the aux directory. This is to match MiKTeX’s treatment of the -aux-di-
rectory option. As further justification, one can say that under modern conditions an .xdv file is (almost)
always an intermediate file. Historically, the situation with .dvi files from latex was different, and currently
dvi previewers do exist.

Variables and options for directories: The variables for setting the aux and output directories are $aux_dir
and $out_dir, with corresponding command line options -auxdir (or -aux-directory) and -outdir (or -out-
put-directory). When a value for these is blank (which is the default value), it implies the use of a default:
For the aux directory, the default is to set it equal to the output directory. For the output directory, the de-
fault is to be the current directory.

For the turning on and off of the emulation mode, there is the configuration variable $emulate_aux and the
options -emulate-aux-dir, -emulate-aux-dir-, -noemulate-aux-dir.

Interaction with -cd option: When the -cd option is used (or the equivalent setting of $do_cd variable), then
latexmk changes the working directory to the document directory before invoking *latex. If the aux and/or
output directories are given by relative paths, e.g., by -outdir=output for a directory named "output", then
the directories are relative to the document directory, rather than relative to the working directory that was
in effect when latexmk was invoked. This matches the behavior of *latex as invoked with the provided com-
mand line directory argument(s) after the change of working directory to the document directory.

Automatic creation of aux and output directories: Unlike *latex, if latexmk finds the requested directory/ies
don’t exist, it creates it/them, thereby avoiding errors when *latex is invoked.

If the document uses the \include macro to read a .tex file from a subdirectory, *latex will attempt to write
an extra aux file to the corresponding subdirectory of the aux directory. If the subdirectory doesn’t exist,
then *latex will complain that it can’t write the aux file. After the run of *latex, latexmk detects this situa-
tion, creates the necessary directory, and reruns *latex with the error situation corrected.

Choice of aux and output directories: Often the aux and output directories are given as subdirectories of the
document directory, e.g., by -outdir=output. But it is possible to provide, for example, an absolute path or
a path relative to a parent directory, e.g., "/tmp/foo" or "../output". Be aware that in general this can cause
problems, notably with makeindex or bibtex. This is because modern versions of these programs, by de-
fault, will refuse to work when they find that they are asked to write to a file in a directory that appears not
to be the current working directory or one of its subdirectories. This is part of security measures by the
whole TeX system that try to prevent malicious or errant TeX documents from incorrectly messing with a
user’s files.

By default, latexmk evades this issue: Before running bibtex and makeindex, latexmk changes working

27 December 2024 22

LATEXMK (1) General Commands Manual LATEXMK (1)

directory to the aux directory, with appropriate settings of search paths. The use or non-use of this trick is
governed by the variables $bibtex_fudge and $makeindex_fudge. Unfortunately, the trick sometimes makes
bibtex and makeindex unable to find files.

If necessary the trick can be turned off. But this is incompatible with an aux directory like, "/tmp/foo" of
"../output"). If you really have to deal with this situation, and only if you have to deal with it, then you
need to disable the security measures (and assume any risks). One way of doing this is to temporarily set
an operating system environment variable openout_any to "a" (as in "all"), to override the default "para-
noid" setting.

Certain names of aux and output directories not allowed on Microsoft Windows: It is natural to want to use
the name "aux" for the aux directory, e.g., by using the option -auxdir=aux. But on Microsoft operating
systems "aux" is one of the names that is not allowed for a file or directory. I find it useful to standardize
on a name like "auxdir" (e.g., by -auxdir=auxdir); this works independently of operating system.

Location of .fls file: Much of the dependency information that latexmk uses comes from the .fls file gener-
ated when *latex is invoked with the -recorder option, which latexmk does by default. It may seem ratio-
nal that this is written to the aux directory. But in fact versions of MiKTeX prior to Oct. 2020 wrote it to
the output directory. Later versions do write it to the aux directory. To deal with this, latexmk does two
things: First, if latexmk finds that the .fls file has only been generated in the "wrong" directory, then la-
texmk copies it to the expected directory, after which latexmk’s operation continues correctly independently
of the behavior of *latex. Second it allows its idea of the "correct" (or expected) directory to be configured
by the variable $fls_uses_aux_dir. This defaults to zero, to correspond to MiKTeX’s current behavior.

ALLOWING FOR CHANGE OF OUTPUT FILE TYPE
When one of the latex engines is run, the usual situation is that latex produces a .dvi file, while pdflatex and
lualatex produce a .pdf file. For xelatex the default is to produce a .pdf file, but to optimize processing time
latexmk runs xelatex its -no-pdf option so that it produces an .xdv file. Further processing by latexmk takes
this as a starting point.

However, the actual output file may differ from the normal expectation; and then latexmk can adjust its pro-
cessing to accommodate this situation. The difference in output file type can happen for two reasons: One
is that for latex, pdflatex and lualatex the document itself can override the defaults. The other is that there
may be a configuration, or misconfiguration, such that the program that latexmk invokes to compile the doc-
ument is not the expected one, or is given options incompatible with what latexmk initially expects.

Under latex and pdflatex, control of the output format by the document is done by setting the \pdfoutput
macro. Under lualatex, the \outputmode macro is used instead.

One example of an important use-case for document control of the output format is a document that uses
the psfrag package to insert graphical elements in the output file. The psfrag package achieves its effects by
inserting postscript code in the output of the compilation of the document. This entails the use of compila-
tion to a .dvi file, followed by the use of conversion to a postscript file (either directly, as by dvips or im-
plicitly, as an intermediate step by dvipdf). Then it is useful to force output to be of the .dvi format by in-
serting \pdfoutput=0 in the preamble of the document.

Another example is where the document uses graphics file of the .pdf, .jpg, and png types. With the default
setting for the graphicx package, these can be processed in compilation to .pdf but not with compilation to
.dvi. In this case, it is useful to insert \pdfoutput=1 in the preamble of the document to force compilation to
.pdf output format.

In all of these cases, it is needed that latexmk has to adjust its processing to deal with a mismatch between
the actual output format (out of .pdf, .dvi, .xdv) and the initially expected output, if possible. Latexmk does

27 December 2024 23

LATEXMK (1) General Commands Manual LATEXMK (1)

this provided the following conditions are met.

The first is that latexmk’s $allow_switch configuration variable is set to a non-zero value as it is by default.
If this variable is zero, a mismatch of filetypes in the compilation results in an error.

The second condition for latexmk to be able to handle a change of output type is that no explicit requests for
.dvi or .ps output files are made. Explicit requests are by the -dvi and -ps, -print=dvi, -print=ps,
-view=dvi, and -view=ps options, and by corresponding settings of the $dvi_mode, $postscript_mode,
$print_type, and $view configuration variables. The print-type and view-type restrictions only apply when
printing and viewing are explicitly requested, respectively. For this purpose, the use of the -pdfdvi and
-pdfps options (and the corresponding setting of the $pdf_mode variable) does not count as an explicit re-
quest for the .dvi and .ps files; they are merely regarded as a request for making a .pdf file together with an
initial proposal for the processing route to make it.

Note that when accommodating a change in output file type, there is involved a substantial change in the
network of rules that latexmk uses in its actions. The second condition applied to accommodate a change is
to avoid situations where the change in the rule network is too radical to be readily handled automatically.

CONFIGURATION/INITIALIZATION (RC) FILES
In this section is explained which configuration files are read by latexmk. Subsequent sections "How to Set
Variables in Initialization Files", "Format of Command Specifications", "List of Configuration Variables
Usable in Initialization Files", "Custom Dependencies", and "Advanced Configuration" give details on what
can be configured and how.

Latexmk can be customized using initialization files, which are read at startup in the following order:

1) The system RC file, if it exists.
On a UNIX system, latexmk searches the following directories for a
system RC file, which may be named either "LatexMk" or "latexmkrc". The
directories are searched in the following order, and latexmk uses
the first such file it finds (if any):
"/etc",
"/opt/local/share/latexmk",
"/usr/local/share/latexmk",
"/usr/local/lib/latexmk".
On a MS-Windows system it looks just in "C:\latexmk".
On a cygwin system (i.e., a MS-Windows system in which Perl is that of cygwin), latexmk looks in the di-

rectories
"/cygdrive/c/latexmk",
"/etc",
"/opt/local/share/latexmk",
"/usr/local/share/latexmk",
"/usr/local/lib/latexmk".

If the environment variable LATEXMKRCSYS is set, its value is used as the name of the system RC file,
instead of any of the above.

2) The user’s RC file, if it exists. This can be in one of two places. The traditional one is ".latexmkrc" in
the user’s home directory. The other possibility is "latexmk/latexmkrc" in the user’s XDG configuration
home directory. The actual file read is the first of "$XDG_CONFIG_HOME/latexmk/latexmkrc" or
"$HOME/.latexmkrc" which exists. (See https://specifications.freedesktop.org/basedir-spec/basedir-spec-
latest.html for details on the XDG Base Directory Specification.)

Here $HOME is the user’s home directory. [Latexmk determines the user’s home directory as follows: It is

27 December 2024 24

LATEXMK (1) General Commands Manual LATEXMK (1)

the value of the environment variable HOME, if this variable exists, which normally is the case on UNIX-
like systems (including Linux and OS-X). Otherwise the environment variable USERPROFILE is used, if
it exists, which normally is the case on MS-Windows systems. Otherwise a blank string is used instead of
$HOME, in which case latexmk does not look for an RC file in it.]

$XDG_CONFIG_HOME is the value of the environment variable XDG_CONFIG_HOME if it exists. If
this environment variable does not exist, but $HOME is non-blank, then $XDG_CONFIG_HOME is set to
the default value of $HOME/.config. Otherwise $XDG_CONFIG_HOME is blank, and latexmk does not
look for an RC file under it.

3) The RC file in the current working directory. This file can be named either "latexmkrc" or ".latexmkrc",
and the first of these to be found is used, if any.

4) Any RC file(s) specified on the command line with the -r option.

Each RC file is a sequence of Perl commands. Naturally, a user can use this in creative ways. But for most
purposes, one simply uses a sequence of assignment statements that override some of the built-in settings of
Latexmk. Straightforward cases can be handled without knowledge of the Perl language by using the exam-
ples in this document as templates. Comment lines are introduced by the "#" character.

Note that command line options are obeyed in the order in which they are written; thus any RC file speci-
fied on the command line with the -r option can override previous options but can be itself overridden by
later options on the command line. There is also the -e option, which allows initialization code to be speci-
fied in latexmk’s command line.

For possible examples of code for in an RC file, see the directory example_rcfiles in the distribution of la-
texmk (e.g., at http://mirror.ctan.org/support/latexmk/example_rcfiles).

HOW TO SET VARIABLES IN INITIALIZATION FILES
The important variables that can be configured are described in the section "List of configuration variables
usable in initialization files". (See the earlier section "Configuration/Initialization (rc) Files" for the files
where the configurations are done.) Syntax for setting these variables is of the following forms:

$bibtex = ’bibtex %O %S’;

for the setting of a string variable,

$preview_mode = 1;

for the setting of a numeric variable, and

@default_files = (’paper’, ’paper1’);

for the setting of an array of strings. It is possible to append an item to an array variable as follows:

push @default_files, ’paper2’;

Note that simple "scalar" variables have names that begin with a $ character and array variables have names
that begin with a @ character. Each statement ends with a semicolon.

Strings should be enclosed in single quotes. (You could use double quotes, as in many programming lan-
guages. But then the Perl programming language brings into play some special rules for interpolating vari-
ables into strings. People not fluent in Perl will want to avoid these complications.)

You can do much more complicated things, but for this you will need to consult a manual for the Perl pro-
gramming language.

27 December 2024 25

LATEXMK (1) General Commands Manual LATEXMK (1)

FORMAT OF COMMAND SPECIFICATIONS
Some of the variables set the commands that latexmk uses for carrying out its work, for example to generate
a .dvi file from a .tex file or to view a postscript file. This section describes some important features of how
the commands are specified. (Note that some of the possibilities listed here do not apply to the $kpsewhich
variable; see its documentation.)

Placeholders: Supposed you wanted latexmk to use the command elatex in place of the regular latex com-
mand, and suppose moreover that you wanted to give it the option "--shell-escape". You could do this by
the following setting:

$latex = ’elatex --shell-escape %O %S’;

The two items starting with the % character are placeholders. These are substituted by appropriate values
before the command is run. Thus %S will be replaced by the source file that elatex will be applied to, and
%O will be replaced by any options that latexmk has decided to use for this command. (E.g., if you used
the -silent option in the invocation of latexmk, it results in the replacement of %O by "-interaction=batch-
mode".)

The available placeholders are:

%A basename of the main tex file. Unlike %R, this is unaffected by the setting of a jobname by the
-jobname option or the $jobname configuration value.

%B base of filename for current command. E.g., if a postscript file document.ps is being made from
the dvi file document.dvi, then the basename is document.

%D destination file (e.g., the name of the postscript file when converting a dvi file to postscript).

%O options

%P If the variable $pre_tex_code is non-empty, then %P is substituted by the contents of
$pre_tex_code followed by \input{SOURCE}, where SOURCE stands for the name of the source
file. Appropriate quoting is done. This enables TeX code to be passed to one of the *latex engines
to be executed before the source file is read.

If the variable $pre_tex_code is the empty string, then %P is equivalent to %S.

%R root filename.

By default this is the basename of the main tex file. However the value can be changed by the use
of the -jobname option or the $jobname configuration variable. This is then the basename for files
like the .aux and .log files produced by running *latex, as well for the main .dvi, .pdf, .ps and/or
.xdvi files.

%S source file (e.g., the name of the dvi file when converting a .dvi file to ps).

%T The name of the primary tex file.

%U If the variable $pre_tex_code is non-empty, then its value is substituted for %U (appropriately
quoted). Otherwise it is replaced by a null string.

%Y Name of directory for auxiliary output files (see the configuration variable $aux_dir). A directory
separation character (’/’) is appended if $aux_dir is non-empty and does not end in a suitable char-
acter, with suitable characters being those appropriate to UNIX and MS-Windows, i.e., ’:’, ’/’ and
’\’. Note that if after initialization, $out_dir is set, but $aux_dir is not set (i.e., it is blank), then
latexmk sets $aux_dir to the same value $out_dir.

%Z Name of directory for output files (see the configuration variable $out_dir). A directory separation
character (’/’) is appended if $out_dir is non-empty and does not end in a suitable character, with
suitable characters being those appropriate to UNIX and MS-Windows, i.e., ’:’, ’/’ and ’\’.

If for some reason you need a literal % character in your string not subject to the above rules, use "%%".

27 December 2024 26

LATEXMK (1) General Commands Manual LATEXMK (1)

Appropriate quoting will be applied to the filename substitutions, so you mustn’t supply them yourself even
if the names of your files have spaces in them. (But if your TeX filenames have spaces in them, beware that
some older versions of the TeX program cannot correctly handle filenames containing spaces.) In case la-
texmk’s quoting does not work correctly on your system, you can turn it off -- see the documentation for the
variable $quote_filenames.

See the default values in the section "List of configuration variables usable in initialization files" for what is
normally the most appropriate usage.

If you omit to supply any placeholders whatever in the specification of a command, latexmk will supply
what its author thinks are appropriate defaults. This gives compatibility with configuration files for previ-
ous versions of latexmk, which didn’t use placeholders.

"Detaching" a command: Normally when latexmk runs a command, it waits for the command to run to
completion. This is appropriate for commands like latex, of course. But for previewers, the command
should normally run detached, so that latexmk gets the previewer running and then returns to its next task
(or exits if there is nothing else to do). To achieve this effect of detaching a command, you need to precede
the command name with "start ", as in

$dvi_previewer = ’start xdvi %O %S’;

This will be translated to whatever is appropriate for your operating system.

Notes: (1) In some circumstances, latexmk will always run a command detached. This is the case for a pre-
viewer in preview continuous mode, since otherwise previewing continuously makes no sense. (2) This
precludes the possibility of running a command named start. (3) If the word start occurs more than once at
the beginning of the command string, that is equivalent to having just one. (4) Under cygwin, some com-
plications happen, since cygwin amounts to a complicated merging of UNIX and MS-Windows. See the
source code for how I’ve handled the problem.

Command names containing spaces: Under MS-Windows it is common that the name of a command in-
cludes spaces, since software is often installed in a subdirectory of "C:\Program Files". Such command
names should be enclosed in double quotes, as in

$lpr_pdf = ’"c:/Program Files/Ghostgum/gsview/gsview32.exe" /p %S’;
$pdf_previewer = ’start "c:/Program Files/SumatraPDF/SumatraPDF.exe" %O %S’;
$pdf_previewer = ’start "c:/Program Files/SumatraPDF (x86)/SumatraPDF.exe" %O %S’;

(Note about the above example: Under MS-Windows forward slashes are equivalent to backslashes in a file-
name under almost all circumstances, provided that the filename is inside double quotes. It is easier to use
forward slashes in examples like the one above, since then one does not have to worry about the rules for
dealing with forward slashes in strings in the Perl language.)

Command names under Cygwin: If latexmk is executed by Cygwin’s Perl, be particularly certain that
pathnames in commands have forward slashes not the usual backslashes for the separator of pathname
components. See the above examples. Backslashes often get misinterpreted by the Unix shell used by
Cygwin’s Perl to execute external commands. Forward slashes don’t suffer from this problem, and (when
quoted, as above) are equally acceptable to MS-Windows.

Using MS-Windows file associations: A useful trick under modern versions of MS-Windows (e.g.,
WinXP) is to use just the command ’start’ by itself:

$dvi_previewer = ’start %S’;

Under MS-Windows, this will cause to be run whatever program the system has associated with dvi files.
(The same applies for a postscript viewer and a pdf viewer.) But note that this trick is not always suitable
for the pdf previwer, if your system has acroread for the default pdf viewer. As explained elsewhere,
acroread under MS-Windows does not work well with latex and latexmk, because acroread locks the pdf

27 December 2024 27

LATEXMK (1) General Commands Manual LATEXMK (1)

file.

Not using a certain command: If a command is not to be run, the command name NONE is used, as in

$lpr = ’NONE lpr’;

This typically is used when an appropriate command does not exist on your system. The string after the
"NONE" is effectively a comment.

Options to commands: Setting the name of a command can be used not only for changing the name of the
command called, but also to add options to command. Suppose you want latexmk to use latex with source
specials enabled. Then you might use the following line in an initialization file:

$latex = ’latex --src-specials %O %S’;

Running a subroutine instead of an external command: Use a specification starting with "internal", as in

$latex = ’internal mylatex %O %S’;
sub mylatex {

my @args = @_;
Possible preprocessing here
return system ’latex’, @args;

}

For some of the more exotic possibilities that then become available, see the section "Advanced configura-
tion: Some extra resources and advanced tricks". Also see some of the examples in the directory exam-
ple_rcfiles in the latexmk distribution.

Advanced tricks: Normally one specifies a single command for the commands invoked by latexmk. Natu-
rally, if there is some complicated additional processing you need to do in your special situation, you can
write a script (or batch file) to do the processing, and then configure latexmk to use your script in place of
the standard program.

You can also use a Perl subroutine instead of a script -- see above. This is generally the most flexible and
portable solution.

It is also possible to configure latexmk to run multiple commands. For example, if when running pdflatex to
generate a pdf file from a tex file you need to run another program after pdflatex to perform some extra pro-
cessing, you could do something like:

$pdflatex = ’pdflatex --shell-escape %O %S; pst2pdf_for_latexmk %B’;

This definition assumes you are using a UNIX-like system (which includes Linux and OS-X), so that the
two commands to be run are separated by the semicolon in the middle of the string.

If you are using MS-Windows, you would replace the above line by

$pdflatex = ’cmd /c pdflatex --shell-escape %O %S’
. ’&& pst2pdf_for_latexmk %B’;

Here, the UNIX command separator ; is replaced by &&. In addition, there is a problem that some versions
of Perl on MS-Windows do not obey the command separator; this problem is overcome by explicitly invok-
ing the MS-Windows command-line processor cmd.exe.

LIST OF CONFIGURATION VARIABLES USABLE IN INITIALIZATION FILES
In this section are specified the variables whose values can be adjusted to configure latexmk. (See the ear-
lier section "Configuration/Initialization (rc) Files" for the files where the configurations are done.)

27 December 2024 28

LATEXMK (1) General Commands Manual LATEXMK (1)

Default values are indicated in brackets. Note that for variables that are boolean in character, concerning
whether latexmk does or does not behave in a certain way, a non-zero value, normally 1, indicates true, i.e.,
the behavior occurs, while a zero value indicates a false value, i.e., the behavior does not occur.

$allow_subdir_creation [1]

Specify action to take when message(s) in the .log file indicate a failure of an attempt by a *latex
compilation to write a file to a subdirectory of the output directory because the subdirectory didn’t
exist.

If the value if $allow_subdir_creation is 0, no action is taken. If it is 1, then the appropriate subdi-
rectory is created and a rerun of *latex is triggered, but only if the file being written is an .aux file.
(This happens, for example, if the document includes a file from a subdirectory of the document
directory, by the \include command. If the value of $allow_subdir_creation is 2, then the subdi-
rectory creation is done independently of which type of file is in question.

$allow_switch [1]

This controls what happens when the output extension of latex, pdflatex, lualatex or xelatex differs
from what is expected. (The possible extensions are .dvi, .pdf, .xdv.) This can happen with the
use of the \pdfoutput macro in a document compiled under latex or pdflatex, or with the use of the
\outputmode macro under lualatex. It can also happen with certain kinds of incorrect configura-
tion.

In such a case, latexmk can appropriately adjust its network of rules. The adjustment is made if
$allow_switch is on, and if no request for a dvi or ps file has been made.

See the section ALLOWING FOR CHANGE OF OUTPUT EXTENSION.

$always_view_file_via_temporary [0]
Whether .ps and .pdf files are initially to be made in a temporary directory and then moved to the
final location. (This applies to dvips, dvipdf, and ps2pdf operations, and the filtering operators on
.dvi and .ps files. It does not apply to pdflatex, unfortunately, since pdflatex provides no way of
specifying a chosen name for the output file.)

This use of a temporary file solves a problem that the making of these files can occupy a substan-
tial time. If a viewer (notably gv) sees that the file has changed, it may read the new file before the
program writing the file has not yet finished its work, which can cause havoc.

See the $pvc_view_file_via_temporary variable for a setting that applies only if preview-continu-
ous mode (-pvc option) is used. See $tmpdir for the setting of the directory where the temporary
file is created.

$analyze_input_log_always [1]

After a run of latex (etc), always analyze .log for input files in the <...> and (...) constructions.
Otherwise, only do the analysis when fls file doesn’t exist or is out of date.

Under normal circumstances, the data in the fls file is reliable, and the test of the log file gets lots
of false positives; usually $analyze_input_log_always is best set to zero. But the test of the log file
is needed at least in the following situation: When a user needs to persuade latexmk that a certain
file is a source file, and latexmk doesn’t otherwise find it. Then the user can write code that causes
a line with (...) to be written to log file. One important case is for lualatex, which doesn’t always

27 December 2024 29

LATEXMK (1) General Commands Manual LATEXMK (1)

generate lines in the .fls file for input lua files. (The situation with lualatex is HIGHLY version de-
pendent, e.g., there was a big change between TeXLive 2016 and TeXLive 2017.)

To keep backward compatibility with older versions of latexmk, the default is to set $analyze_in-
put_log_always to 1.

$auto_rc_use [1]
Whether to automatically read the standard initialization (rc) files, which are the system RC file,
the user’s RC file, and the RC file in the current directory. The command line option -norc can be
used to turn this setting off. Each RC file could also turn this setting off, i.e., it could set
$auto_rc_use to zero to prevent automatic reading of the later RC files.

This variable does not affect the reading of RC files specified on the command line by the -r op-
tion.

$aux_dir [""]
The aux directory, i.e., the directory in which auxiliary files (aux, log, etc) are to be written by a
run of *latex.

If this variable is not set, but $out_dir is set, then latexmk takes the aux directory to equal the out-
put directory which is the directory to which final output files are to be written.

If neither variable is set, then the current directory when *latex is invoked is used both for the aux
and output directories.

If the aux and output directories are distinct, then the aux directory contains all generated files
with the exception of "final output files", which are defined to be .dvi, .ps, .pdf, .synctex, and
.synctex.gz files.

See the section AUXILIARY AND OUTPUT DIRECTORIES for more details.

$aux_out_dir_report [0]
If this variable is set to 1, then prior to the processing of each primary .tex file, list the settings for
aux and output directories, after they have been normalized from the settings specified during ini-
tialization.

This report gives a reminder of where to look for generated files.

The report is done per primary .tex file, because of possible directory changes for each file (when
the -cd option is used). In the simplest cases, the directory names are the same as originally speci-
fied. But in general some clean up/normalization is performed; this helps performance and cleans
up output to the screen.

If this variable is set to 2, then halt after reporting the settings for the aux and out directories,
rather than continuing with processing of tex files. This setting is primarily used for debugging
configuration issues. See the -dir-report-only option.

$bad_warning_is_error [0]
Whether to treat bad warnings reported by *latex in log file as errors. The specifications of the
warning messages are in @bad_warnings.

27 December 2024 30

LATEXMK (1) General Commands Manual LATEXMK (1)

@bad_warnings
Array of regular expressions specifying messages in log file that are officially treated as warnings
rather than errors by *latex, but which a user may treat as errors: See $bad_warning_is_error.

Currently the default set of these warnings is those about \end occurring inside constructs.

$banner [0]
If nonzero, the banner message is printed across each page when converting the dvi file to post-
script. Without modifying the variable $banner_message, this is equivalent to specifying the -d
option.

Note that if $banner is nonzero, the $postscript_mode is assumed and the postscript file is always
generated, even if it is newer than the dvi file.

$banner_intensity [0.95]
Equivalent to the -bi option, this is a decimal number between 0 and 1 that specifies how dark to
print the banner message. 0 is black, 1 is white. The default is just right if your toner cartridge
isn’t running too low.

$banner_message ["DRAFT"]
The banner message to print across each page when converting the dvi file to postscript. This is
equivalent to the -bm option.

$banner_scale [220.0]
A decimal number that specifies how large the banner message will be printed. Experimentation is
necessary to get the right scale for your message, as a rule of thumb the scale should be about
equal to 1100 divided by the number of characters in the message. The Default is just right for 5
character messages. This is equivalent to the -bs option.

@BIBINPUTS
This is an array variable, now mostly obsolete, that specifies directories where latexmk should look
for .bib files. By default it is set from the BIBINPUTS environment variable of the operating sys-
tem. If that environment variable is not set, a single element list consisting of the current directory
is set. The format of the directory names depends on your operating system, of course. Examples
for setting this variable are:

@BIBINPUTS = (".", "C:\\bibfiles");
@BIBINPUTS = (".", "\\server\bibfiles");
@BIBINPUTS = (".", "C:/bibfiles");
@BIBINPUTS = (".", "//server/bibfiles");
@BIBINPUTS = (".", "/usr/local/texmf/bibtex/bib");

Note that under MS Windows, either a forward slash "/" or a backward slash "\" can be used to
separate pathname components, so the first two and the second two examples are equivalent. Each
backward slash should be doubled to avoid running afoul of Perl’s rules for writing strings. Gener-
ally, it is simplest always to use forward slashes instead of backward slashes.

Important note: This variable is now mostly obsolete in the current version of latexmk, since it
now uses a better method of searching for files using the kpsewhich command. However, if your
system is an unusual one without the kpsewhich command, you may need to set the variable
@BIBINPUTS.

$biber ["biber %O %S"]
The biber processing program.

27 December 2024 31

LATEXMK (1) General Commands Manual LATEXMK (1)

$biber_silent_switch ["--onlylog"]
Switch(es) for the biber processing program when silent mode is on.

$bibtex ["bibtex %O %S"]
The BibTeX processing program.

$bibtex_fudge [1]
When using bibtex, whether to change directory to $aux_dir before running bibtex.

The need arises as follows:

a. With bibtex before about 2019, if the filename given to it contains a path component, there was
a bug that bibtex would not find extra aux files, as produced by the \include command in TeX.

b. With all moderately recent versions of bibtex, bibtex may refuse to write its bbl and blg files, for
security reasons, for certain cases of the path component of the filename given to it.

However, there are also rare cases where the change-directory method prevents bibtex from find-
ing certain bib or bst files. Then $bibtex_fudge needs to be set to 0.

$bibtex_silent_switch ["-terse"]
Switch(es) for the BibTeX processing program when silent mode is on.

$bibtex_use [1]
Under what conditions to run bibtex or biber. When latexmk discovers from the log file that one
(or more) bibtex/biber-generated bibliographies are used, it can run bibtex or biber whenever it ap-
pears necessary to regenerate the bbl file(s) from their source bib database file(s). But sometimes,
the bib file(s) are not available (e.g., for a document obtained from an external archive), but the bbl
files are provided. In that case use of bibtex or biber will result in incorrect overwriting of the pre-
cious bbl files. The variable $bibtex_use controls whether this happens, and also controls whether
or not .bbl files are deleted in a cleanup operation.

The possible values of $bibtex_use are:
0: never use bibtex or biber; never delete .bbl files in a cleanup.
1: only use bibtex or biber if the bib file(s) exist; never
delete .bbl files in a cleanup.
1.5: only use bibtex or biber if the bib files exist;
conditionally delete .bbl files in a cleanup (i.e., delete them only when
the bib files all exist).
2: run bibtex or biber whenever it appears necessary to update the bbl file(s), without testing for

the existence of the bib files; always delete .bbl files in a cleanup.

Note: When biber is being used, conditional use of biber can be problematic. From latexmk’s
point of view the problem is that because of how biber works, a full knowledge of its source files
can only be obtained after running biber. In contrast, for bibtex, full information on which bib
files are used is obtained from the .aux file(s) after a run of *latex. But for biber, the correspond-
ing information is somewhat incomplete; this the information obtained in the .bcf file that is gener-
ated by the biblatex package during a run of *latex.

$cleanup_includes_cusdep_generated [0]
If nonzero, specifies that cleanup also deletes files that are generated by custom dependencies.
(When doing a clean up, e.g., by use of the -C option, custom dependencies are those listed in the
.fdb_latexmk file from a previous run.)

27 December 2024 32

LATEXMK (1) General Commands Manual LATEXMK (1)

$cleanup_includes_generated [0]
If nonzero, specifies that cleanup also deletes files that are detected in the fls file (or failing that, in
log file) as being generated. It will also include files made from these first generation generated
files.

This operation is somewhat dangerous, and can have unintended consequences, since the files to
be deleted are determined from a file created by *latex, which can contain erroneous information.
Therefore this variable is turned off by default, and then files to be deleted are restricted to those
explicitly specified by patterns configured in the variables clean_ext, clean_full_ext, and @gener-
ated_exts. Standard cases (e.g., .log files) appear in latexmk’s initial value for the array @gener-
ated_exts.

$cleanup_mode [0]
If nonzero, specifies cleanup mode: 1 for full cleanup, 2 for cleanup except for .dvi, .ps and .pdf
files, 3 for cleanup except for dep and aux files. (There is also extra cleaning as specified by the
$clean_ext, $clean_full_ext and @generated_exts variables.)

This variable is equivalent to specifying one of the -c or -C options. But there should be no need
to set this variable from an RC file.

$clean_ext [""]
Extra extensions of files for latexmk to remove when any of the clean-up options (-c or -C) is se-
lected. The value of this variable is a string containing the extensions separated by spaces.

It is also possible to specify a more general pattern of file to be deleted, by using the place holder
%R, as in commands, and it is also possible to use wildcards. Thus setting

$clean_ext = "out %R-blx.bib %R-figures*.log pythontex-files-%R/*";

in an initialization file will imply that when a clean-up operation is specified, not only is the stan-
dard set of files deleted, but also files of the form FOO.out, FOO-blx.bib, FOO-figures*.log, and
pythontex-files-FOO/*, where FOO stands for the basename of the file being processed (as in
FOO.tex).

Most of the files to be deleted are relative to the directory specified by $aux_dir. Note that if
$out_dir but not $aux_dir is set, then in its initialization, latexmk sets $aux_dir equal to $out_dir.
A normal situation is therefore that $aux_dir equals $out_dir, which is the only case directly sup-
ported by TeXLive, unlike MiKTeX. Note that even with TeXLive latexmk does now support dif-
ferent values for the directories -- see the explanation of the $emulate_aux variable.

If $out_dir and $aux_dir different, latexmk actually deletes any files of the specified names in both
$aux_dir and $out_dir; this is because under certain error conditions, the files may be put in
$out_dir instead of $aux_dir. This also handles the case of deleting any fls file, since that file is in
$out_dir.

The filenames specified for a clean-up operation can refer not only to regular files but also to direc-
tories. Directories are only deleted if they are empty. An example of an application is to python-
tex, which creates files in a particular directory. You can arrange to remove both the files and the
directory by setting

$clean_ext = "pythontex-files-%R/* pythontex-files-%R";

See also the (array) variable @generated_exts. In the past, this variable had certain uses beyond
that of $clean_ext. But now, they accomplish the same things. In fact, after initialization includ-
ing the processing of command line options, latexmk simply appends the list of extensions in
$clean_ext to the array @generated_exts.

27 December 2024 33

LATEXMK (1) General Commands Manual LATEXMK (1)

$clean_full_ext [""]
Extra extensions of files for latexmk to remove when the -C option is selected, i.e., extensions of
files to remove when the .dvi, etc files are to be cleaned-up.

More general patterns are allowed, as for $clean_ext.

The files specified by $clean_full_ext to be deleted are relative to the directory specified by
$out_dir.

$compiling_cmd [""], $failure_cmd [""], $warning_cmd [""], $success_cmd [""]

These variables specify commands that are executed at certain points of compilations. One moti-
vation for their existence is to allow very useful convenient visual indications of compilation status
even when the window receiving the screen output of the compilation is hidden. This is particu-
larly useful in preview-continuous mode.

The commands are executed at the following points: $compiling_cmd at the start of compilation,
$success_cmd at the end of a completely successful compilation, $failure_cmd at the end of an un-
successful compilation, $warning_cmd at the of an otherwise successful compilation that gives
warnings about undefined citations or references or about multiply defined references. If any of
above variables is undefined or blank (the default situation), then the corresponding command is
not executed.

However, when $warning_cmd is not set, then in the case of a compilation with warnings about
references or citations, but with no other error, one or other of $success_cmd or $failure_cmd is
used (if it is set) according to the setting of $warnings_as_errors.

An example of a simple setting of these variables is as follows

$compiling_cmd = "xdotool search --name \"%D\" set_window --name \"%D compiling\"";
$success_cmd = "xdotool search --name \"%D\" set_window --name \"%D OK\"";
$warning_cmd = "xdotool search --name \"%D\" ".

"set_window --name \"%D CITE/REF ISSUE\"";
$failure_cmd = "xdotool search --name \"%D\" set_window --name \"%D FAILURE\"";

These assume that the program xdotool is installed, that the previewer is using an X-Window sys-
tem for display, and that the title of the window contains the name of the displayed file, as it nor-
mally does. When the commands are executed, the placeholder string %D is replaced by the name
of the destination file, which is the previewed file. The above commands result in an appropriate
string being appended to the filename in the window title: " compiling", " OK", or " FAILURE".

Other placeholders that can be used are %S, %T, and %R, with %S and %T normally being identi-
cal. These can be useful for a command changing the title of the edit window. The visual indica-
tion in a window title can useful, since the user does not have to keep shifting attention to the (pos-
sibly hidden) compilation window to know the status of the compilation.

More complicated situations can best be handled by defining a Perl subroutine to invoke the neces-
sary commands, and using the "internal" keyword in the definitions to get the subroutine to be in-
voked. (See the section "Format of Command Specifications" for how to do this.)

Naturally, the above settings that invoke the xdotool program are only applicable when the X-Win-
dow system is used for the relevant window(s). For other cases, you will have to find what soft-
ware solutions are available.

27 December 2024 34

LATEXMK (1) General Commands Manual LATEXMK (1)

@cus_dep_list [()]
Custom dependency list -- see section on "Custom Dependencies".

@default_excluded_files [()]
When latexmk is invoked with no files specified on the command line, then, by default, it will
process all files in the current directory with the extension .tex. (In general, it will process the files
specified in the @default_files variable.)

But sometimes you want to exclude particular files from this default list. In that case you can
specify the excluded files in the array @default_excluded_files. For example if you wanted to
process all .tex files with the exception of common.tex, which is a not a standard alone LaTeX file
but a file input by some or all of the others, you could do

@default_files = ("*.tex");

@default_excluded_files = ("common.tex");

If you have a variable or large number of files to be processed, this method saves you from having
to list them in detail in @default_files and having to update the list every time you change the set
of files to be processed.

Notes: 1. This variable has no effect except when no files are specified on the latexmk command
line. 2. Wildcards are allowed in @default_excluded_files.

@default_files [("*.tex")]
Default list of files to be processed.

If no filenames are specified on the command line, latexmk processes all tex files specified in the
@default_files variable, which by default is set to all tex files ("*.tex") in the current directory.
This is a convenience: just run latexmk and it will process an appropriate set of files. But some-
times you want only some of these files to be processed. In this case you can list the files to be
processed by setting @default_files in an initialization file (e.g., the file "latexmkrc" in the current
directory). Then if no files are specified on the command line then the files you specify by setting
@default_files are processed.

Three examples:

@default_files = ("paper_current");

@default_files = ("paper1", "paper2.tex");

@default_files = ("*.tex", "*.dtx");

Note that more than file may be given, and that the default extension is ".tex". Wild cards are al-
lowed. The parentheses are because @default_files is an array variable, i.e., a sequence of file-
name specifications is possible.

If you want latexmk to process all .tex files with a few exceptions, see the @default_excluded_files
array variable.

$dependents_phony [0]
If a list of dependencies is output, this variable determines whether to include a phony target for
each source file. If you use the dependents list in a Makefile, the dummy rules work around errors
make gives if you remove header files without updating the Makefile to match.

27 December 2024 35

LATEXMK (1) General Commands Manual LATEXMK (1)

$dependents_list [0]
Whether to display a list(s) of dependencies at the end of a run.

$deps_escape ["none"]
This variable determines which kind of escaping of space characters to use in dependency lists.
The possible values are "none", "unix", "nmake", corresponding respectively to no escaping, es-
caping with a "\" suitable for standard Unix make, and escaping with "ˆ", suitable for Microsoft’s
nmake.

Currently the only character escaped is a space, since that is particularly common in file names
and directory names. There are other characters that would need escaping if a dependency list is
to be used as-is by a make program; but those characters (e.g., "$") commonly cause difficulties
when used for .tex documents. Moreover, the detailed rules for which characters need to be es-
caped depends on the version of make.

$deps_file ["-"]
Name of file to receive list(s) of dependencies at the end of a run, to be used if $dependents_list is
set. If the filename is "-", then the dependency list is set to stdout (i.e., normally the screen).

$do_cd [0]
Whether to change working directory to the directory specified for the main source file before pro-
cessing it. The default behavior is not to do this, which is the same as the behavior of *latex pro-
grams. This variable is set by the -cd and -cd- options on latexmk’s command line.

$dvi_filter [empty]
The dvi file filter to be run on the newly produced dvi file before other processing. Equivalent to
specifying the -dF option.

$dvilualatex ["dvilualatex %O %S"]
Specifies the command line to invoke the dvilualatex program. Note that as with other programs,
you can use this variable not just to change the name of the program used, but also specify options
to the program. E.g.,

$dvilualatex = "dvilualatex --src-specials %O %S";

To do a coordinated setting of all of $dvilualatex, $hilatex, $latex, $pdflatex, $lualatex, and $xela-
tex, see the section "Advanced Configuration".

$dvi_mode [See below for default]
If one, generate a dvi version of the document by use of latex. Equivalent to the -dvi option.

If 2, generate a dvi version of the document by use of dvilualatex. Equivalent to the -dvilua op-
tion.

The variable $dvi_mode defaults to 0, but if no explicit requests are made for other types of file
(postscript, pdf), then $dvi_mode will be set to 1. In addition, if a request for a file for which a
.dvi file is a prerequisite and $dvi_mode is zero, then $dvi_mode is set to 1.

$dvilualatex_silent_switch ["-interaction=batchmode"]
Switch(es) for the dvilualatex program (specified in the variable $dvilualatex) when silent mode is
on.

27 December 2024 36

LATEXMK (1) General Commands Manual LATEXMK (1)

See details of the $latex_silent_switch for other information that equally applies to $dviluala-
tex_silent_switch.

$dvi_previewer ["start xdvi %O %S" under UNIX]
The command to invoke a dvi-previewer. [Under MS-Windows the default is "start"; then latexmk
arranges to use the MS-Windows start program, which will cause to be run whatever command the
system has associated with .dvi files.]

Important note: Normally you will want to have a previewer run detached, so that latexmk
doesn’t wait for the previewer to terminate before continuing its work. So normally you should
prefix the command by "start ", which flags to latexmk that it should do the detaching of the pre-
viewer itself (by whatever method is appropriate to the operating system). But sometimes letting
latexmk do the detaching is not appropriate (for a variety of non-trivial reasons), so you should put
the "start " bit in yourself, whenever it is needed.

$dvi_previewer_landscape ["start xdvi %O %S"]
The command to invoke a dvi-previewer in landscape mode. [Under MS-Windows the default is
"start"; then latexmk arranges to use the MS-Windows start program, which will cause to be run
whatever command the system has associated with .dvi files.]

$dvipdf ["dvipdf -dALLOWPSTRANSPARENCY %O %S %D"]
Command to convert .dvi to .pdf file. A common reconfiguration is to use the dvipdfm command,
which needs its arguments in a different order:

$dvipdf = "dvipdfm %O -o %D %S";

WARNING: The default dvipdf script generates pdf files with bitmapped fonts, which do not look
good when viewed by acroread. That script should be modified to give dvips the options "-P pdf"
to ensure that type 1 fonts are used in the pdf file.

$dvipdf_silent_switch ["-q"]
Switch(es) for dvipdf program when silent mode is on.

N.B. The standard dvipdf program runs silently, so adding the silent switch has no effect, but is ac-
tually innocuous. But if an alternative program is used, e.g., dvipdfmx, then the silent switch has
an effect. The default setting is correct for dvipdfm and dvipdfmx.

$dvips ["dvips %O -o %D %S"]
The program to used as a filter to convert a .dvi file to a .ps file. If pdf is going to be generated
from pdf, then the value of the $dvips_pdf_switch variable -- see below -- will be included in the
options substituted for "%O".

$dvips_landscape ["dvips -tlandscape %O -o %D %S"]
The program to used as a filter to convert a .dvi file to a .ps file in landscape mode.

$dvips_pdf_switch ["-P pdf"]
Switch(es) for dvips program when pdf file is to be generated from .ps file.

$dvips_silent_switch ["-q"]
Switch(es) for dvips program when silent mode is on.

$dvi_update_command [""]
When the dvi previewer is set to be updated by running a command, this is the command that is
run. See the information for the variable $dvi_update_method for further information, and see in-
formation on the variable $pdf_update_method for an example for the analogous case of a pdf pre-
viewer.

27 December 2024 37

LATEXMK (1) General Commands Manual LATEXMK (1)

$dvi_update_method [2 under UNIX, 1 under MS-Windows]
How the dvi viewer updates its display when the dvi file has changed. The values here apply
equally to the $pdf_update_method and to the $ps_update_method variables.

0 => update is automatic,
1=> manual update by user, which may only mean a mouse click on the viewer’s window or

may mean a more serious action.
2 => Send the signal, whose number is in the variable $dvi_update_signal. The default value

under UNIX is suitable for xdvi.
3 => Viewer cannot do an update, because it locks the file. (As with acroread under MS-Win-

dows.)
4 => run a command to do the update. The command is specified by the variable $dvi_up-

date_command.

See information on the variable $pdf_update_method for an example of updating by command.

$dvi_update_signal [Under UNIX: SIGUSR1, which is a system-dependent value]
The number of the signal that is sent to the dvi viewer when it is updated by sending a signal -- see
the information on the variable $dvi_update_method. The default value is the one appropriate for
xdvi on a UNIX system.

$emulate_aux [1]
Whether to emulate the use of aux directory when $aux_dir and $out_dir are different, rather than
using the -aux-directory option for the *latex programs. (MiKTeX supports -aux-directory, but
TeXLive doesn’t.)

If you use a version of *latex that doesn’t support -aux-directory, e.g., TeXLive, latexmk will au-
tomatically switch aux_dir emulation on after the first run of *latex, because it will find the .log
file in the wrong place. But it is better to set $emulate_aux to 1 in an rc file, or equivalently to use
the -emulate-aux-dir option. This emulation mode works equally well with MiKTeX.

Aux directory emulation means that when *latex is invoked, the output directory provided to *la-
tex is set to be the desired aux directory. After that, any files that need to be in the output directory
will be moved there by latexmk. (These are the files with extensions .dvi, .ps, .pdf, .synctex, .sync-
tex.gz, and, depending on the setting of the $fls_uses_out_dir variable, also the .fls file.)

$failure_cmd [undefined]
See the documentation for $compiling_cmd.

$fdb_ext ["fdb_latexmk"]
The extension of the file which latexmk generates to contain a database of information on source
files. You will not normally need to change this.

@file_not_found
This an array of Perl regular expressions that are patterns to find messages in the .log file from a
run of *latex that indicate that a file was looked for and not found. To see the current default set,
you should look at the definition of @file_not_found in the latexmk.pl file.

In the regular expression, the string for the name of the missing file should be enclosed in paren-
theses. That carries the implication that after latexmk gets a successful match to the pattern, the
variable $1 is set to the filename, which is then picked up by latexmk.

If you happen to encounter a package that gives a missing file message of a different form than one
that matches one of the built-in patterns, you can add another pattern to the array. An example
would be

27 December 2024 38

LATEXMK (1) General Commands Manual LATEXMK (1)

push @file_not_found, ’ˆNo file\\s+(.+)\\s*$’;

The regular expression itself is

ˆMissing file\s+(.+)\s*$

But the corresponding string specification in the push statement has to have the backslashes dou-
bled.

This regular expression matches a line that starts with ’No file’, then has one or more white space
characters, then any number of characters forming the filename, then possible white space, and fi-
nally the end of the line. (See documentation on Perl regular expressions for details.)

$filetime_causality_threshold [5]
The use of this variable is as follows: At a number of places, latexmk needs to determine whether
a particular file has been produced during a just-concluded run of some rule/program or is leftover
from a previous run. (An example is the production of a .bcf file by the biblatex package during a
run of *latex to provide bibliographic information to the biber program. If a .bcf file is not pro-
duced during a current run of *latex, but is leftover from a previous run, then latexmk has to con-
clude that the .tex document has changed so that biber is no longer to be used.)

Latexmk’s criterion that a file has been produced during a run is that the modification time of the
file is more recent than the system time at the beginning of the run. Bascially, if the modification
time is earlier than this, then it is a leftover from a previous run. However, a naive use of the crite-
rion can, among other things, run afoul of the granularity of how file times are stored in some file
systems, which means it is possible that the filesystem’s reported time for a file might be a second
or more earlier than the actual modification time, the exact difference being quite random.

The variable $filetime_causality_threshold allows an appopriate sloppiness in latexmk’s use of file
modification time. It can be quite generous; it should merely be less than the time scale on which
a human user makes changes to source files for a document (or to configuration files, etc).

$fls_uses_out_dir [0]
This variable determines whether or not the .fls file should be in the output directory instead of the
natural directory, which is the aux directory. If the variable is nonzero, the .fls file is to be in the
output directory. See the section AUXILIARY AND OUTPUT DIRECTORIES for more details
about these directories. The rationale for the existence of the variable $fls_uses_aux_dir is ex-
plained there.

In all cases, if latexmk finds that an .fls file has been generated in the opposite directory to the one
specified by $fls_uses_out_dir, it copies the file to the other directory (aux or output directory as
appropriate). The file is copied rather than simply moved, to avoid potential clashes with other
software that assumes the .fls file is generated in the directory it was written to by *latex. Thus the
effect an incorrect setting of $fls_uses_out_dir is only to cause a superfluous copy of the .fls file to
be generated.

$force_mode [0]
If nonzero, continue processing past minor latex errors including unrecognized cross references.
Equivalent to specifying the -f option.

@generated_exts [(’aux’, ’bcf’, ’fls’, ’idx’, ’ind’, ’lof’, ’lot’, ’out’, ’toc’, ’blg’, ’ilg’, ’log’, ’xdv’)]

This contains a list of extensions for files that are generated during processing, and that should be

27 December 2024 39

LATEXMK (1) General Commands Manual LATEXMK (1)

deleted during a main clean up operation, as invoked by the command line option -c. (The use of
-C or -gg gives this clean up and more.)

The default values are extensions for standard files generated by *latex, bibtex, and the like. (Note
that the clean up also deletes the fdb_latexmk file, but that’s separately coded into latexmk, cur-
rently.)

After initialization of latexmk and the processing of its command line, the items in clean_ext are
appended to @generated_exts. So these two variables have the same meaning (contrary to older
versions of latexmk).

The items in @generated_exts are normally extensions of files, whose base name is the same as
the main tex file. But it is also possible to specify patterns including that basename --- see the ex-
planation of the variable $clean_ext.

In addition to specifying files to be deleted in a clean up, latexmk uses the same specification to
assist its examination of changes in source files: Under some situations it needs to find those
changes in files (since a previous run) that are expected to be due to the user editing a file. This
contrasts with the cases of files that are generated by some program run by latexmk and that differ
from the results of the previous run. This use of @generated_exts is normally unimportant, given
the usual accuracy of latexmk’s other ways of determining these generated files.

A convenient way to add an extra extension to the list, without losing the already defined ones is to
use a push command in the line in an RC file. E.g.,

push @generated_exts, "end";

adds the extension "end" to the list of predefined generated extensions. (This extension is used by
the RevTeX package, for example.)

$go_mode [0]
If nonzero, process files regardless of timestamps, and is then equivalent to the -g option.

%hash_calc_ignore_pattern
!!!This variable is for experts only!!!

The general rule latexmk uses for determining when an extra run of some program is needed is that
one of the source files has changed. But consider for example a latex package that causes an en-
capsulated postscript file (an "eps" file) to be made that is to be read in on the next run. The file
contains a comment line giving its creation date and time. On the next run the time changes, latex
sees that the eps file has changed, and therefore reruns latex. This causes an infinite loop, that is
only terminated because latexmk has a limit on the number of runs to guard against pathological
situations.

But the changing line has no real effect, since it is a comment. You can instruct latex to ignore the
offending line as follows:

$hash_calc_ignore_pattern{’eps’} = ’ˆ%%CreationDate: ’;

This creates a rule for files with extension .eps about lines to ignore. The left-hand side is a Perl
idiom for setting an item in a hash. Note that the file extension is specified without a period. The
value, on the right-hand side, is a string containing a regular expression. (See documentation on
Perl for how they are to be specified in general.) This particular regular expression specifies that
lines beginning with "%%CreationDate: " are to be ignored in deciding whether a file of the given

27 December 2024 40

LATEXMK (1) General Commands Manual LATEXMK (1)

extension .eps has changed.

There is only one regular expression available for each extension. If you need more one pattern to
specify lines to ignore, then you need to combine the patterns into a single regular expression.
The simplest method is separate the different simple patterns by a vertical bar character (indicating
"alternation" in the jargon of regular expressions). For example,

$hash_calc_ignore_pattern{’eps’} = ’ˆ%%CreationDate: |ˆ%%Title: ’;

causes lines starting with either "ˆ%%CreationDate: " or "ˆ%%Title: " to be ignored.

It may happen that a pattern to be ignored is specified in, for example, in a system or user initial-
ization file, and you wish to remove this in a file that is read later. To do this, you use Perl’s delete
function, e.g.,

delete $hash_calc_ignore_pattern{’eps’};

$hilatex ["hilatex %O %S"]
specifies the command line for the hilatex program.

$hnt_mode [0]
Whether to generate a hnt version of the document by use of hilatex. Can be turned on by the use
of the -hnt option.

$jobname [""]

This specifies the jobname, i.e., the basename that is used for generated files (.aux, .log, .dvi, .ps,
.pdf, etc). If this variable is a null string, then the basename is the basename of the main tex file.
(At present, the string in $jobname should not contain spaces.)

The placeholder ’%A’ is permitted. This will be substituted by the basename of the TeX file. The
primary purpose is when a variety of tex files are to be processed, and you want to use a different
jobname for each but one that is distinct for each. Thus if you wanted to compare compilations of
a set of files on different operating systems, with distinct filenames for all the cases, you could set

$jobname = "%A-$ˆO";

in an initialization file. (Here $ˆO is a variable provided by perl that contains perl’s name for the
operating system.)

Suppose you had .tex files test1.tex and test2.tex. Then when you run

latexmk -pdf *.tex

both files will be compiled. The .aux, .log, and .pdf files will have basenames test1-MSWin32
ante test2-MSWin32 on a MS-Windows system, test1-darwin and test2-darwin on an OS-X sys-
tem, and a variety of similar cases on linux systems.

$kpsewhich ["kpsewhich %S"]
The program called to locate a source file when the name alone is not sufficient. Most filenames
used by latexmk have sufficient path information to be found directly. But sometimes, notably
when a .bib or a .bst file is found from the log file of a bibtex or biber run, only the base name of
the file is known, but not its path. The program specified by $kpsewhich is used to find it.

27 December 2024 41

LATEXMK (1) General Commands Manual LATEXMK (1)

(For advanced users: Because of the different way in which latexmk uses the command specified
in $kpsewhich, some of the possibilities listed in the FORMAT OF COMMAND SPECIFICA-
TIONS do not apply. The internal and start keywords are not available. A simple command speci-
fication with possible options and then "%S" is all that is guaranteed to work. Note that for other
commands, "%S" is substituted by a single source file. In contrast, for $kpsewhich, "%S" may be
substituted by a long list of space-separated filenames, each of which is quoted. The result on
STDOUT of running the command is then piped to latexmk.)

See also the @BIBINPUTS variable for another way that latexmk also uses to try to locate files; it
applies only in the case of .bib files.

$kpsewhich_show [0]
Whether to show diagnostics about invocations of kpsewhich: the command line use to invoke it
and the results. These diagnostics are shown if $kpsewhich_show is non-zero or if diagnostics
mode is on. (But in the second case, lots of other diagnostics are also shown.) Without these diag-
nostics there is nothing visible in latexmk’s screen output about invocations of kpsewhich.

$landscape_mode [0]
If nonzero, run in landscape mode, using the landscape mode previewers and dvi to postscript con-
verters. Equivalent to the -l option. Normally not needed with current previewers.

$latex ["latex %O %S"]
Specifies the command line for the LaTeX processing program. Note that as with other programs,
you can use this variable not just to change the name of the program used, but also specify options
to the program. E.g.,

$latex = "latex --src-specials %O %S";

To do a coordinated setting of all of $dvilualatex, $hilatex, $latex, $pdflatex, $lualatex, and $xela-
tex, see the section "Advanced Configuration".

%latex_input_extensions
This variable specifies the extensions tried by latexmk when it finds that a LaTeX run resulted in
an error that a file has not been found, and the file is given without an extension. This typically
happens when LaTeX commands of the form \input{file} or \includegraphics{figure}, when the
relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s), but re-
stricts it to the extensions specified by the variable %latex_input_extensions. The default exten-
sions are ’tex’ and ’eps’.

(For Perl experts: %latex_input_extensions is a hash whose keys are the extensions. The values
are irrelevant.) Two subroutines are provided for manipulating this and the related variable
%pdflatex_input_extensions, add_input_ext and remove_input_ext. They are used as in the fol-
lowing examples are possible lines in an initialization file:

remove_input_ext(’latex’, ’tex’);

removes the extension ’tex’ from latex_input_extensions

add_input_ext(’latex’, ’asdf’);

add the extension ’asdf to latex_input_extensions. (Naturally with such an extension, you should

27 December 2024 42

LATEXMK (1) General Commands Manual LATEXMK (1)

have made an appropriate custom dependency for latexmk, and should also have done the appro-
priate programming in the LaTeX source file to enable the file to be read. The standard extensions
are handled by LaTeX and its graphics/graphicx packages.)

$latex_silent_switch ["-interaction=batchmode"]
Switch(es) for the LaTeX processing program when silent mode is on.

If you use MikTeX, you may prefer the results if you configure the options to include -c-style-er-
rors, e.g., by the following line in an initialization file

$latex_silent_switch = "-interaction=batchmode -c-style-errors";

$lpr ["lpr %O %S" under UNIX/Linux, "NONE lpr" under MS-Windows]
The command to print postscript files.

Under MS-Windows (unlike UNIX/Linux), there is no standard program for printing files. But
there are ways you can do it. For example, if you have gsview installed, you could use it with the
option "/p":

$lpr = ’"c:/Program Files/Ghostgum/gsview/gsview32.exe" /p’;

If gsview is installed in a different directory, you will need to make the appropriate change. Note
the combination of single and double quotes around the name. The single quotes specify that this
is a string to be assigned to the configuration variable $lpr. The double quotes are part of the
string passed to the operating system to get the command obeyed; this is necessary because one
part of the command name ("Program Files") contains a space which would otherwise be misinter-
preted.

$lpr_dvi ["NONE lpr_dvi"]
The printing program to print dvi files.

$lpr_pdf ["NONE lpr_pdf"]
The printing program to print pdf files.

Under MS-Windows you could set this to use gsview, if it is installed, e.g.,

$lpr = ’"c:/Program Files/Ghostgum/gsview/gsview32.exe" /p’;

If gsview is installed in a different directory, you will need to make the appropriate change. Note
the double quotes around the name: this is necessary because one part of the command name
("Program Files") contains a space which would otherwise be misinterpreted.

$lualatex ["lualatex %O %S"]
Specifies the command line for the LaTeX processing program that is to be used when the lualatex
program is called for (e.g., by the option -lualatex.

To do a coordinated setting of all of $dvilualatex, $hilatex, $latex, $pdflatex, $lualatex, and $xela-
tex, see the section "Advanced Configuration".

%lualatex_input_extensions
This variable specifies the extensions tried by latexmk when it finds that a lualatex run resulted in
an error that a file has not been found, and the file is given without an extension. This typically
happens when LaTeX commands of the form \input{file} or \includegraphics{figure}, when the
relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s), but

27 December 2024 43

LATEXMK (1) General Commands Manual LATEXMK (1)

restricts it to the extensions specified by the variable %pdflatex_input_extensions. The default ex-
tensions are ’tex’, ’pdf’, ’jpg, and ’png’.

See details of the %latex_input_extensions for other information that equally applies to %luala-
tex_input_extensions.

$lualatex_silent_switch ["-interaction=batchmode"]
Switch(es) for the lualatex program (specified in the variable $lualatex) when silent mode is on.

See details of the $latex_silent_switch for other information that equally applies to $luala-
tex_silent_switch.

$make ["make"]
The make processing program.

$makeindex ["makeindex %O -o %D %S"]
The index processing program.

$makeindex_fudge [0]
When using makeindex, whether to change directory to $aux_dir before running makeindex. Set
to 1 if $aux_dir is not an explicit subdirectory of current directory, otherwise makeindex will
refuse to write its output and log files, for security reasons.

$makeindex_silent_switch ["-q"]
Switch(es) for the index processing program when silent mode is on.

$max_repeat [5]
The maximum number of times latexmk will run *latex before deciding that there may be an infi-
nite loop and that it needs to bail out, rather than rerunning *latex again to resolve cross-refer-
ences, etc. The default value covers all normal cases.

(Note that the "etc" covers a lot of cases where one run of *latex generates files to be read in on a
later run.)

$MSWin_back_slash [1]
This configuration variable only has an effect when latexmk is running under MS-Windows. With
the default value of 1 for this variable, when a command is executed under MS-Windows, latexmk
substitutes "\" for the separator character between components of a directory name. Internally, la-
texmk uses "/" for the directory separator character, which is the character used by Unix-like sys-
tems.

For almost all programs and for almost all filenames under MS-Windows, both "\" and "/" are ac-
ceptable as the directory separator character, provided at least that filenames are properly quoted.
But it is possible that programs exist that only accept "\" on the command line, since that is the
standard directory separator for MS-Windows. So for safety latexmk makes the substitution from
"/" to "\", by default.

However there are also programs on MS-Windows for which a back slash "\" is interpreted differ-
ently than as a directory separator; for these the directory separator should be "/". Programs with
this behavior include all the *latex programs in the TeXLive implementation (but not the MiKTeX
implementation). Hence if you use TeXLive on MS-Windows, then $MSWin_back_slash should
be set to zero.

$new_viewer_always [0]
This variable applies to latexmk only in continuous-preview mode. If $new_viewer_always is 0,
latexmk will check for a previously running previewer on the same file, and if one is running will
not start a new one. If $new_viewer_always is non-zero, this check will be skipped, and latexmk
will behave as if no viewer is running.

27 December 2024 44

LATEXMK (1) General Commands Manual LATEXMK (1)

$out_dir [""]
If non-blank, this variable specifies the output directory.

This is the directory in which the main output files are written (dvi, ps, pdf, synctex, synctex.gz).
In addition, if the aux directory equals the output directory, as is the case by default, then other
generated files are in effect written to the output directory.

If $out_dir is blank, the output directory is the current directory at the invocation of *latex; this is
equivalent to setting $out_dir to ’.’.

See the section AUXILIARY AND OUTPUT DIRECTORIES for more details.

$out2_dir [""]
(Experimental new feature.)

If non-blank, this variable specifies the final-output directory, i.e., the directory for the final output
files. If this variable is blank (its default value), the final-output directory is the same as the output
directory.

See the description of the option -out2dir for an explanation of the rationale for the idea of sepa-
rate output and final-output directories.

If the final-output directory is different from the output directory, then after a full round of compi-
lations of the document, the relevant set of files is copied here from the output directory. The files
copied are specified by the @out2_exts variable, and by default are those with extensions ’hnt’,
’pdf’, ’ps’, ’synctex’, ’synctex.gz’, and a basename the same as for the main *latex compilation.

@out2_exts [(’hnt’, ’pdf’, ’ps’, ’synctex’, ’synctex.gz’)]

This variable lists the extensions of the files to be copied to the final-output directory. The base-
name of the files is that for the main *latex compilation (corresponding to the value specified by
the placeholder %R). More general names may be specified in the same way as for the @gener-
ated_exts variable, by inclusion of %R in a pattern, e.g.,

push @out2_exts, ’%R-2up.pdf’;

$pdf_mode [0]
If zero, do NOT generate a pdf version of the document. If equal to 1, generate a pdf version of
the document using pdflatex, using the command specified by the $pdflatex variable. If equal to 2,
generate a pdf version of the document from the ps file, by using the command specified by the
$ps2pdf variable. If equal to 3, generate a pdf version of the document from the dvi file, by using
the command specified by the $dvipdf variable. If equal to 4, generate a pdf version of the docu-
ment using lualatex, using the command specified by the $lualatex variable. If equal to 5, gener-
ate a pdf version (and an xdv version) of the document using xelatex, using the commands speci-
fied by the $xelatex and xdvipdfmx variables.

In $pdf_mode=2, it is ensured that .dvi and .ps files are also made. In $pdf_mode=3, it is ensured
that a .dvi file is also made. But this may be overridden by the document.

$pdflatex ["pdflatex %O %S"]
Specifies the command line for the LaTeX processing program in a version that makes a pdf file
instead of a dvi file.

27 December 2024 45

LATEXMK (1) General Commands Manual LATEXMK (1)

An example use of this variable is to add certain options to the command line for the program,
e.g.,

$pdflatex = "pdflatex --shell-escape %O %S";

(In some earlier versions of latexmk, you needed to use an assignment to $pdflatex to allow the use
of lualatex or xelatex instead of pdflatex. There are now separate configuration variables for the
use of lualatex or xelatex. See $lualatex and $xelatex.)

To do a coordinated setting of all of $dvilualatex, $hilatex, $latex, $pdflatex, $lualatex, and $xela-
tex, see the section "Advanced Configuration".

%pdflatex_input_extensions
This variable specifies the extensions tried by latexmk when it finds that a pdflatex run resulted in
an error that a file has not been found, and the file is given without an extension. This typically
happens when LaTeX commands of the form \input{file} or \includegraphics{figure}, when the
relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s), but re-
stricts it to the extensions specified by the variable %pdflatex_input_extensions. The default ex-
tensions are ’tex’, ’pdf’, ’jpg, and ’png’.

See details of the %latex_input_extensions for other information that equally applies to %pdfla-
tex_input_extensions.

$pdflatex_silent_switch ["-interaction=batchmode"]
Switch(es) for the pdflatex program (specified in the variable $pdflatex) when silent mode is on.

See details of the $latex_silent_switch for other information that equally applies to $pdfla-
tex_silent_switch.

$pdf_previewer ["start acroread %O %S"]
The command to invoke a pdf-previewer.

On MS-Windows, the default is changed to "cmd /c start """; under more recent versions of Win-
dows, this will cause to be run whatever command the system has associated with .pdf files. But
this may be undesirable if this association is to acroread -- see the notes in the explanation of the
-pvc option.]

On OS-X the default is changed to "open %S", which results in OS-X starting up (and detaching)
the viewer associated with the file. By default, for pdf files this association is to OS-X’s preview,
which is quite satisfactory.

WARNING: Problem under MS-Windows: if acroread is used as the pdf previewer, and it is actu-
ally viewing a pdf file, the pdf file cannot be updated. Thus makes acroread a bad choice of pre-
viewer if you use latexmk’s previous-continuous mode (option -pvc) under MS-windows. This
problem does not occur if, for example, SumatraPDF or gsview is used to view pdf files.

Important note: Normally you will want to have a previewer run detached, so that latexmk
doesn’t wait for the previewer to terminate before continuing its work. So normally you should
prefix the command by "start ", which flags to latexmk that it should do the detaching of the pre-
viewer itself (by whatever method is appropriate to the operating system). But sometimes letting
latexmk do the detaching is not appropriate (for a variety of non-trivial reasons), so you should put
the "start " bit in yourself, whenever it is needed.

27 December 2024 46

LATEXMK (1) General Commands Manual LATEXMK (1)

$pdf_update_command [""]
When the pdf previewer is set to be updated by running a command, this is the command that is
run. See the information for the variable $pdf_update_method.

$pdf_update_method [1 under UNIX, 3 under MS-Windows]
How the pdf viewer updates its display when the pdf file has changed. See the information on the
variable $dvi_update_method for the codes. (Note that information needs be changed slightly so
that for the value 4, to run a command to do the update, the command is specified by the variable
$pdf_update_command, and for the value 2, to specify update by signal, the signal is specified by
$pdf_update_signal.)

Note that acroread under MS-Windows (but not UNIX) locks the pdf file, so the default value is
then 3.

Arranging to use a command to get a previewer explicitly updated requires three variables to be
set. For example:

$pdf_previewer = "start xpdf -remote %R %O %S";
$pdf_update_method = 4;
$pdf_update_command = "xpdf -remote %R -reload";

The first setting arranges for the xpdf program to be used in its "remote server mode", with the
server name specified as the rootname of the TeX file. The second setting arranges for updating to
be done in response to a command, and the third setting sets the update command.

$pdf_update_signal [Under UNIX: SIGHUP, which is a system-dependent value]
The number of the signal that is sent to the pdf viewer when it is updated by sending a signal -- see
the information on the variable $pdf_update_method. The default value is the one appropriate for
gv on a UNIX system.

$pid_position[1 under UNIX, -1 under MS-Windows]
The variable $pid_position is used to specify which word in lines of the output from $pscmd corre-
sponds to the process ID. The first word in the line is numbered 0. The default value of 1 (2nd
word in line) is correct for Solaris 2.6, Linux, and OS-X with their default settings of $pscmd.

Setting the variable to -1 is used to indicate that $pscmd is not to be used.

$postscript_mode [0]
If nonzero, generate a postscript version of the document. Equivalent to the -ps option.

If some other request is made for which a postscript file is needed, then $postscript_mode will be
set to 1.

$pre_tex_code [’’]

Sets TeX code to be executed before inputting the source file. This works if the relevant one of
$latex, etc contains a suitable command line with a %P or %U substitution. For example you
could do

$latex = ’latex %O %P’;
$pre_tex_code = ’\AtBeginDocument{An initial message\par}’;

To set all of $latex, $pdflatex, $lualatex, and $xelatex you could use the subroutine alt_tex_cmds:

&alt_tex_cmds;
$pre_tex_code = ’\AtBeginDocument{An initial message\par}’;

27 December 2024 47

LATEXMK (1) General Commands Manual LATEXMK (1)

$preview_continuous_mode [0]
If nonzero, run a previewer to view the document, and continue running latexmk to keep .dvi up-
to-date. Equivalent to the -pvc option. Which previewer is run depends on the other settings, see
the command line options -view=, and the variable $view.

$preview_mode [0]
If nonzero, run a previewer to preview the document. Equivalent to the -pv option. Which pre-
viewer is run depends on the other settings, see the command line options -view=, and the variable
$view.

$printout_mode [0]
If nonzero, print the document using the command specified in the $lpr variable. Equivalent to the
-p option. This is recommended not to be set from an RC file, otherwise you could waste lots of
paper.

$print_type = ["auto"]
Type of file to printout: possibilities are "auto", "dvi", "none", "pdf", or "ps". See the option
-print= for the meaning of the "auto" value.

$pscmd
Command used to get all the processes currently run by the user. The -pvc option uses the com-
mand specified by the variable $pscmd to determine if there is an already running previewer, and
to find the process ID (needed if latexmk needs to signal the previewer about file changes).

Each line of the output of this command is assumed to correspond to one process. See the
$pid_position variable for how the process number is determined.

The default for pscmd is "NONE" under MS-Windows and cygwin (i.e., the command is not used),
"ps -ww -u $ENV{USER}" under OS-X, and "ps -f -u $ENV{USER}" under other operating sys-
tems (including Linux). In these specifications "$ENV{USER}" is substituted by the username.

$ps2pdf ["ps2pdf -dALLOWPSTRANSPARENCY %O %S %D"]
Command to convert .ps to .pdf file.

$ps_filter [empty]
The postscript file filter to be run on the newly produced postscript file before other processing.
Equivalent to specifying the -pF option.

$ps_previewer ["start gv %O %S", but start %O %S under MS-Windows]
The command to invoke a ps-previewer. (The default under MS-Windows will cause to be run
whatever command the system has associated with .ps files.)

Note that gv could be used with the -watch option updates its display whenever the postscript file
changes, whereas ghostview does not. However, different versions of gv have slightly different
ways of writing this option. You can configure this variable appropriately.

WARNING: Linux systems may have installed one (or more) versions of gv under different
names, e.g., ggv, kghostview, etc, but perhaps not one actually called gv.

Important note: Normally you will want to have a previewer run detached, so that latexmk
doesn’t wait for the previewer to terminate before continuing its work. So normally you should
prefix the command by "start ", which flags to latexmk that it should do the detaching of the pre-
viewer itself (by whatever method is appropriate to the operating system). But sometimes letting
latexmk do the detaching is not appropriate (for a variety of non-trivial reasons), so you should put
the "start " bit in yourself, whenever it is needed.

27 December 2024 48

LATEXMK (1) General Commands Manual LATEXMK (1)

$ps_previewer_landscape ["start gv -swap %O %S", but start %O %S under MS-Windows]
The command to invoke a ps-previewer in landscape mode.

$ps_update_command [""]
When the postscript previewer is set to be updated by running a command, this is the command
that is run. See the information for the variable $ps_update_method.

$ps_update_method [0 under UNIX, 1 under MS-Windows]
How the postscript viewer updates its display when the .ps file has changed. See the information
on the variable $dvi_update_method for the codes. (Note that information needs be changed
slightly so that for the value 4, to run a command to do the update, the command is specified by
the variable $ps_update_command, and for the value 2, to specify update by signal, the signal is
specified by $ps_update_signal.)

$ps_update_signal [Under UNIX: SIGHUP, which is a system-dependent value]
The number of the signal that is sent to the pdf viewer when it is updated by sending a signal -- see
$ps_update_method. The default value is the one appropriate for gv on a UNIX system.

$pvc_timeout [0]
If this variable is nonzero, there will be a timeout in pvc mode after a period of inactivity. Inactiv-
ity means a period when latexmk has detected no file changes and hence has not taken any actions
like compiling the document. The period of inactivity is in the variable $pvc_timeout_mins.

$pvc_timeout_mins [30]
The period of inactivity, in minutes, after which pvc mode times out. This is used if $pvc_timeout
is nonzero.

$pvc_view_file_via_temporary [1]
The same as $always_view_file_via_temporary, except that it only applies in preview-continuous
mode (-pvc option).

$quote_filenames [1]
This specifies whether substitutions for placeholders in command specifications (as in $pdflatex)
are surrounded by double quotes. If this variable is 1 (or any other value Perl regards as true), then
quoting is done. Otherwise quoting is omitted.

The quoting method used by latexmk is tested to work correctly under UNIX systems (including
Linux and Mac OS-X) and under MS-Windows. It allows the use of filenames containing special
characters, notably spaces. (But note that many versions of *latex cannot correctly deal with TeX
files whose names contain spaces. Latexmk’s quoting only ensures that such filenames are cor-
rectly treated by the operating system in passing arguments to programs.)

$rc_report [1]
After initialization, whether to give a list of the RC files read.

$recorder [1]
Whether to use the -recorder option to *latex. Use of this option results in a file of extension .fls
containing a list of the files that these programs have read and written. Latexmk will then use this
file to improve its detection of source files and generated files after a run of *latex.

It is generally recommended to use this option (or to configure the $recorder variable to be on.)
But it only works if *latex supports the -recorder option, which is true for most current implemen-
tations

Note about the name of the .fls file: Most implementations of *latex produce an .fls file with the
same basename as the main document’s LaTeX, e.g., for Document.tex, the .fls file is Docu-
ment.fls. However, some implementations instead produce files named for the program, i.e., la-
tex.fls or pdflatex.fls. In this second case, latexmk copies the latex.fls or pdflatex.fls to a file with
the basename of the main LaTeX document, e.g., Document.fls.

27 December 2024 49

LATEXMK (1) General Commands Manual LATEXMK (1)

$search_path_separator [See below for default]
The character separating paths in the environment variables TEXINPUTS, BIBINPUTS, and
BSTINPUTS. This variable is mainly used by latexmk when the -outdir, -output-directory,
-auxdir, and/or -aux-directory options are used. In that case latexmk needs to communicate ap-
propriately modified search paths to bibtex, dvipdf, dvips, and *latex.

[Comment to technically savvy readers: *latex doesn’t actually need the modified search path.
But, surprisingly, dvipdf and dvips do, because sometimes graphics files get generated in the out-
put or aux directories.]

The default under MSWin and Cygwin is ’;’ and under UNIX-like operating systems (including
Linux and OS-X) is ’:’. Normally the defaults give correct behavior. But there can be difficulties
if your operating system is of one kind, but some of your software is running under an emulator
for the other kind of operating system; in that case you’ll need to find out what is needed, and set
$search_path_separator explicitly. (The same goes, of course, for unusual operating systems that
are not in the MSWin, Linux, OS-X, Unix collection.)

$show_time [0]
Whether to show time used, both the total and for individual steps.

Note: On MS Windows, this is clock time. On other OSs it is the CPU time used (by latexmk and
the child processes it invokes). The OS-dependence is because of a limitation of Windows. If you
wish to force the use of clock instead of CPU time, you can set

$times_are_clock = 1;

$silence_logfile_warnings [0]
Whether after a run of *latex to summarize warnings in the log file about undefined citations and
references. Setting $silence_logfile_warnings=0 gives the summary of warnings (provided silent
mode isn’t also set), and this is useful to locate undefined citations and references without search-
ing through the much more verbose log file or the screen output of *latex. But the summary can
also be excessively annoying. The default is not to give these warnings. The command line op-
tions -silence_logfile_warning_list and -silence_logfile_warning_list- also set this variable.

Note that multiple occurrences for the same undefined object on the same page and same line will
be compressed to a single warning.

$silent [0]
Whether to run silently. Setting $silent to 1 has the same effect as the -quiet of -silent options on
the command line.

$sleep_time [2]
The time to sleep (in seconds) between checking for source-file changes when running with the
-pvc option. If non-zero, it is subject to a minimum value give by the $min_sleep_time variable.
But a zero value is also allowed.

A value of exactly 0 gives no delay between checks for source-file changes; it typically results in
100% CPU usage, which may not be desirable.

In old versions of latexmk, the default value of $sleep_time of 2 was set to give a reasonable com-
promise between responsiveness in

B-pvc mode and the amount of CPU usage. On modern com-

puters with fast multi-core CPUs, a smaller value, e.g., 0.1 can give good results, especially when
working with small documents whose compilation may take well under a second.

27 December 2024 50

LATEXMK (1) General Commands Manual LATEXMK (1)

$texfile_search [""]
This is an obsolete variable, replaced by the @default_files variable.

For backward compatibility, if you choose to set $texfile_search, it is a string of space-separated
filenames, and then latexmk replaces @default_files with the filenames in $texfile_search to which
is added "*.tex".

$success_cmd [undefined]
See the documentation for $compiling_cmd.

$tmpdir [See below for default]
Directory to store temporary files that latexmk may generate while running.

The default under MSWindows (including cygwin), is to set $tmpdir to the value of the first of
whichever of the system environment variables TMPDIR or TEMP exists, otherwise to the current
directory. Under other operating systems (expected to be UNIX/Linux, including OS-X), the de-
fault is the value of the system environment variable TMPDIR if it exists, otherwise "/tmp".

$use_make_for_missing_files [0]
Whether to use make to try and make files that are missing after a run of *latex, and for which a
custom dependency has not been found. This is generally useful only when latexmk is used as part
of a bigger project which is built by using the make program.

Note that once a missing file has been made, no further calls to make will be made on a subsequent
run of latexmk to update the file. Handling this problem is the job of a suitably defined Makefile.
See the section "USING latexmk WITH make" for how to do this. The intent of calling make from
latexmk is merely to detect dependencies.

$user_deleted_file_treated_as_changed [0]
Whether when testing for changed files, a user file that changes status from existing to non-exist-
ing should be regarded as changed.

The default value is 0, which implies that if a user file (as opposed to a generated file) has been
deleted since the previous run, then no recompilation should be done. The reasoning is that a re-
run would simply produce an error.

If the value is 1, then disappearance of a user file is treated as triggering a rerun, but only in non-
preview-continuous mode.

If the value is 2, then disappearance of a user file is treated as triggering a rerun, always.

$view ["default"]
Which kind of file is to be previewed if a previewer is used. The possible values are "default",
"dvi", "hnt", "ps", "pdf", "none". The value of "default" means that the "highest" of the kinds of
file generated is to be used (among .dvi, .hnt, .ps and .pdf).

$warnings_as_errors [0]
Normally latexmk copies the behavior of latex in treating undefined references and citations and
multiply defined references as conditions that give a warning but not an error. The variable $warn-
ings_as_errors controls whether this behavior is modified.

When the variable is non-zero, latexmk at the end of its run will return a non-zero status code to
the operating system if any of the files processed gives a warning about problems with citations or
references (i.e., undefined citations or references or multiply defined references). This is after

27 December 2024 51

LATEXMK (1) General Commands Manual LATEXMK (1)

latexmk has completed all the runs it needs to try and resolve references and citations. Thus
$warnings_as_errors being nonzero causes latexmk to treat such warnings as errors, but only
when they occur on the last run of *latex and only after processing is complete. A non-zero value
$warnings_as_errors can be set by the command-line option -Werror.

The default behavior is normally satisfactory in the usual edit-compile-edit cycle. But, for exam-
ple, latexmk can also be used as part of a build process for some bigger project, e.g., for creating
documentation in the build of a software application. Then it is often sensible to treat citation and
reference warnings as errors that require the overall build process to be aborted. Of course, since
multiple runs of *latex are generally needed to resolve references and citations, what matters is not
the warnings on the first run, but the warnings on the last run; latexmk takes this into account ap-
propriately.

In addition, when preview-continuous mode is used, a non-zero value for $warnings_as_errors
changes the use of the commands $failure_cmd, $warning_cmd, and $success_cmd after a compli-
ation. If there are citation or reference warnings, but no other errors, the behavior is as follows. If
$warning_cmd is set, it is used. If it is not set, then then if $warnings_as_errors is non-zero and
$failure_cmd is set, then $failure_cmd. Otherwise $success_cmd is used, if it is set. (The forego-
ing explanation is rather complicated, because latexmk has to deal with the case that one or more
of the commands isn’t set.)

$xdv_mode [0]
If one, generate an xdv version of the document by use of xelatex.

$xdvipdfmx ["xdvipdfmx -E -o %D %O %S"]

The program to make a pdf file from an xdv file (used in conjunction with xelatex when
$pdf_mode=5).

$xdvipdfmx_silent_switch ["-q"]
Switch(es) for the xdvipdfmx program when silent mode is on.

$xelatex ["xelatex %O %S"]
Specifies the command line for the LaTeX processing program of when the xelatex program is
called for. See the documentation of the -xelatex option for some special properties of latexmk’s
use of xelatex.

Note about xelatex: latexmk uses xelatex to make an .xdv rather than .pdf file, with the .pdf file be-
ing created in a separate step. This is enforced by the use of the -no-pdf option. If %O is part of
the command for invoking xelatex, then latexmk will insert the -no-pdf option automatically, oth-
erwise you must provide the option yourself. See the documentation for the -pdfxe option for why
latexmk makes a .xdv file rather than a .pdf file when xelatex is used.

To do a coordinated setting of all of $dvilualatex, $hilatex, $latex, $pdflatex, $lualatex, and $xela-
tex, see the section "Advanced Configuration".

%xelatex_input_extensions
This variable specifies the extensions tried by latexmk when it finds that an xelatex run resulted in
an error that a file has not been found, and the file is given without an extension. This typically
happens when LaTeX commands of the form \input{file} or \includegraphics{figure}, when the
relevant source file does not exist.

In this situation, latexmk searches for custom dependencies to make the missing file(s), but re-
stricts it to the extensions specified by the variable %xelatex_input_extensions. The default

27 December 2024 52

LATEXMK (1) General Commands Manual LATEXMK (1)

extensions are ’tex’, ’pdf’, ’jpg, and ’png’.

See details of the %latex_input_extensions for other information that equally applies to %xela-
tex_input_extensions.

$xelatex_silent_switch ["-interaction=batchmode"]
Switch(es) for the xelatex program (specified in the variable $xelatex) when silent mode is on.

See details of the $latex_silent_switch for other information that equally applies to $xela-
tex_silent_switch.

CUSTOM DEPENDENCIES
In any RC file a set of custom dependencies can be set up to convert a file with one extension to a file with
another. An example use of this would be to allow latexmk to convert a .fig file to .eps to be included in the
.tex file.

Defining a custom dependency:
The old method of configuring latexmk to use a custom dependency was to directly manipulate the
@cus_dep_list array that contains information defining the custom dependencies. (See the section "Old
Method of Defining Custom Dependencies" for details.) This method still works, but is no longer preferred.

A better method is to use the subroutines that allow convenient manipulations of the custom dependency
list. These are

add_cus_dep(fromextension, toextension, must, subroutine)
remove_cus_dep(fromextension, toextension)
show_cus_dep()

The arguments are as follows:

from extension:
The extension of the file we are converting from (e.g. "fig"). It is specified without a period.

to extension:
The extension of the file we are converting to (e.g. "eps"). It is specified without a period.

must: If non-zero, the file from which we are converting must exist, if it doesn’t exist latexmk will give
an error message and exit unless the -f option is specified. If must is zero and the file we are con-
verting from doesn’t exist, then no action is taken. Generally, the appropriate value of must is
zero.

function:
The name of the subroutine that latexmk should call to perform the file conversion. The first argu-
ment to the subroutine is the base name of the file to be converted without any extension. The sub-
routines are declared in the syntax of Perl. The function should return 0 if it was successful and a
nonzero number if it failed.

Naturally add_cus_dep adds a custom dependency with the specified from and to extensions. If a custom
dependency has been previously defined (e.g., in an rcfile that was read earlier), then it is replaced by the
new one.

The subroutine remove_cus_dep removes the specified custom dependency. The subroutine show_cus_dep
causes a list of the currently defined custom dependencies to be sent to the screen output.

27 December 2024 53

LATEXMK (1) General Commands Manual LATEXMK (1)

How custom dependencies are used:
An instance of a custom dependency rule is created whenever latexmk detects that a run of *latex needs to
read a file, like a graphics file, whose extension is the to-extension of a custom dependency. Then latexmk
examines whether a file exists with the same name, but with the corresponding from-extension, as specified
in the custom-dependency. If it does, then a corresponding instance of the custom dependency is created,
after which the rule is invoked whenever the destination file (the one with the to-extension) is out-of-date
with respect to the corresponding source file.

To make the new destination file, the Perl subroutine specified in the rule is invoked, with an argument that
is the base name of the files in question. Simple cases just involve a subroutine invoking an external pro-
gram; this can be done by following the templates below, even by those without knowledge of the Perl pro-
gramming language. Of course, experts could do something much more elaborate.

One item in the specification of each custom-dependency rule, labeled "must" above, specifies how the rule
should be applied when the source file fails to exist.

When latex reports that an input file (e.g., a graphics file) does not exist, latexmk tries to find a source file
and a custom dependency that can be used to make it. If it succeeds, then it creates an instance of the cus-
tom dependency and invokes it to make the missing file, after which the next pass of latex etc will be able to
read the newly created file.

Note for advanced usage: The operating system’s environment variable TEXINPUTS can be used to spec-
ify a search path for finding files by latex etc. Correspondingly, when a missing file is reported, latexmk
looks in the directories specified in TEXINPUTS as well as in the current directory, to find a source file
from which an instance of a custom dependency can be used to make the missing file.

Function to implement custom dependency, traditional method:
The function that implements a custom dependency gets the information on the files to be processed in two
ways. The first is through its one argument; the argument contains the base name of the source and destina-
tion files. The second way is described later.

A simple and typical example of code in an initialization rcfile using the first method is:

add_cus_dep(’fig’, ’eps’, 0, ’fig2eps’);
sub fig2eps {

system("fig2dev -Leps \"$_[0].fig\" \"$_[0].eps\"");
}

The first line adds a custom dependency that converts a file with extension "fig", as created by the xfig pro-
gram, to an encapsulated postscript file, with extension "eps". The remaining lines define a subroutine that
carries out the conversion. If a rule for converting "fig" to "eps" files already exists (e.g., from a previously
read-in initialization file), the latexmk will delete this rule before making the new one.

Suppose latexmk is using this rule to convert a file "figure.fig" to "figure.eps". Then it will invoke the
fig2eps subroutine defined in the above code with a single argument "figure", which is the basename of
each of the files (possibly with a path component). This argument is referred to by Perl as $_[0]. In the ex-
ample above, the subroutine uses the Perl command system to invoke the program fig2dev. The double
quotes around the string are a Perl idiom that signify that each string of the form of a variable name, $_[0]
in this case, is to be substituted by its value.

If the return value of the subroutine is non-zero, then latexmk will assume an error occurred during the exe-
cution of the subroutine. In the above example, no explicit return value is given, and instead the return
value is the value returned by the last (and only) statement, i.e., the invocation of system, which returns the
value 0 on success.

27 December 2024 54

LATEXMK (1) General Commands Manual LATEXMK (1)

If you use pdflatex, lualatex or xelatex instead of latex, then you will probably prefer to convert your graph-
ics files to pdf format, in which case you would replace the above code in an initialization file by

add_cus_dep(’fig’, ’pdf, 0, ’fig2pdf’);
sub fig2pdf {

system("fig2dev -Lpdf \"$_[0].fig\" \"$_[0].pdf\"");
}

Note 1: In the command lines given in the system commands in the above examples, double quotes have
been inserted around the file names (implemented by ’\"’ in the Perl language). They immunize the run-
ning of the program against special characters in filenames. Very often these quotes are not necessary, i.e.,
they can be omitted. But it is normally safer to keep them in. Even though the rules for quoting vary be-
tween operating systems, command shells and individual pieces of software, the quotes in the above exam-
ples do not cause problems in the cases I have tested.

Note 2: One case in which the quotes are important is when the files are in a subdirectory and your operat-
ing system is Microsoft Windows. Then the separator character for directory components can be either a
forward slash ’/’ or Microsoft’s more usual backward slash ’\’. Forward slashes are generated by latexmk,
to maintain its sanity from software like MiKTeX that mixes both directory separators; but their correct use
normally requires quoted filenames. (See a log file from a run of MiKTeX (at least in v. 2.9) for an exam-
ple of the use of both directory separators.)

Note 3: The subroutines implementing custom dependencies in the examples given just have a single line
invoking an external program. That’s the usual situation. But since the subroutines are in the Perl lan-
guage, you can implement much more complicated processing if you need it.

Removing custom dependencies, and when you might need to do this:
If you have some general custom dependencies defined in the system or user initialization file, you may find
that for a particular project they are undesirable. So you might want to delete the unneeded ones. A situa-
tion where this would be desirable is where there are multiple custom dependencies with the same from-ex-
tension or the same to-extension. In that case, latexmk might choose a different one from the one you want
for a specific project. As an example, to remove any "fig" to "eps" rule you would use:

remove_cus_dep(’fig’, ’eps’);

If you have complicated sets of custom dependencies, you may want to get a listing of the custom depen-
dencies. This is done by using the line

show_cus_dep();

in an initialization file.

Function implementing custom dependency, alternative methods:
So far the examples for functions to implement custom dependencies have used the argument of the func-
tion to specify the base name of converted file. This method has been available since very old versions of
latexmk, and many examples can be found, e.g., on the web.

However in later versions of latexmk the internal structure of the implementation of its "rules" for the steps
of processing, including custom dependencies, became much more powerful. The function implementing a
custom dependency is executed within a special context where a number of extra variables and subroutines
are defined. Publicly documented ones, intended to be long-term stable, are listed below, under the heading
"Variables and subroutines for processing a rule".

Examples of their use is given in the following examples, concerning multiple index files and glossaries.

27 December 2024 55

LATEXMK (1) General Commands Manual LATEXMK (1)

The only index-file conversion built-in to latexmk is from an ".idx" file written on one run of *latex to an
".ind" file to be read in on a subsequent run. But with the index.sty package, for example, you can create
extra indexes with extensions that you configure. Latexmk does not know how to deduce the extensions
from the information it has. But you can easily write a custom dependency. For example if your latex file
uses the command "\newindex{special}{ndx}{nnd}{Special index}" you will need to get latexmk to con-
vert files with the extension .ndx to .nnd. The most elementary method is to define a custom dependency as
follows:

add_cus_dep(’ndx’, ’nnd’, 0, ’ndx2nnd’);
sub ndx2nnd {

return system("makeindex -o \"$_[0].nnd\" \"$_[0].ndx\"");
}
push @generated_exts, ’ndx’, ’nnd’;

Notice the added line compared with earlier examples. The extra line gets the extensions "ndx" and "nnd"
added to the list of extensions for generated files; then the extra index files will be deleted by clean-up oper-
ations

But if you have yet more indexes with yet different extensions, e.g., "adx" and "and", then you will need a
separate function for each pair of extensions. This is quite annoying. You can use the Run_subst function
to simplify the definitions to use a single function:

add_cus_dep(’ndx’, ’nnd’, 0, ’dx2nd’);
add_cus_dep(’adx’, ’and’, 0, ’dx2nd’);
sub dx2nd {

return Run_subst("makeindex -o %D %S");
}
push @generated_exts, ’ndx’, ’nnd’, ’adx’, ’and’;

You could also instead use

add_cus_dep(’ndx’, ’nnd’, 0, ’dx2nd’);
add_cus_dep(’adx’, ’and’, 0, ’dx2nd’);
sub dx2nd {

return Run_subst($makeindex);
}
push @generated_exts, ’ndx’, ’nnd’, ’adx’, ’and’;

This last example uses the command specification in $makeindex, and so any customization you have made
for the standard index also applies to your extra indexes.

Similar techniques can be applied for glossaries.

Those of you with experience with Makefiles, may get concerned that the .ndx file is written during a run of
*latex and is always later than the .nnd last read in. Thus the .nnd appears to be perpetually out-of-date.
This situation, of circular dependencies, is endemic to latex, and is one of the issues that latexmk is pro-
grammed to overcome. It examines the contents of the files (by use of a checksum), and only does a re-
make when the file contents have actually changed.

Of course if you choose to write random data to the .nnd (or the .aux file, etc) that changes on each new
run, then you will have a problem. For real experts: See the %hash_calc_ignore_pattern if you have to deal
with such problems.

27 December 2024 56

LATEXMK (1) General Commands Manual LATEXMK (1)

Old Method of Defining Custom Dependencies:
In much older versions of latexmk, the only method of defining custom dependencies was to directly manip-
ulate the table of custom dependencies. This is contained in the @cus_dep_list array. It is an array of
strings, and each string in the array has four items in it, each separated by a space, the from-extension, the
to-extension, the "must" item, and the name of the subroutine for the custom dependency. These were all
defined above.

An example of the old method of defining custom dependencies is as follows. It is the code in an RC file to
ensure automatic conversion of .fig files to .eps files:

push @cus_dep_list, "fig eps 0 fig2eps";
sub fig2eps {

return system("fig2dev -Lps \"$_[0].fig\" \"$_[0].eps\"");
}

This method still works, and is almost equivalent to the code given earlier that used the add_cus_dep sub-
routine. However, the old method doesn’t delete any previous custom-dependency for the same conversion.
So the new method is preferable.

ADVANCED CONFIGURATION: SOME EXTRA RESOURCES AND ADVANCED TRICKS
For most purposes, simple configuration for latexmk along the lines of the examples given is sufficient. But
sometimes you need something harder. In this section, I indicate some extra possibilities. Generally to use
these, you need to be fluent in the Perl language, since this is what is used in the rc files.

In this section, I include first, a description of a number of variables and subroutines that provide, among
other things, access to latexmk’s internal data structures for handling dependencies. Then I describe the
hook mechanism whereby at certain points in the processing, latexmk can call user-defined subroutines.

See also the section DEALING WITH ERRORS, PROBLEMS, ETC. See also the examples in the direc-
tory example_rcfiles in the latexmk distributions. Even if none of the examples apply to your case, they
may give you useful ideas

Variables and subroutines for processing a rule
A step in the processing is called a rule. One possibility to implement the processing of a rule is by a Perl
subroutine. This is always the case for custom dependencies. Also, for any other rule, you can use a sub-
routine by prefixing the command specification by the word "internal" -- see the section FORMAT OF
COMMAND SPECIFICATIONS.

When you use a subroutine for processing a rule, all the possibilities of Perl programming are available, of
course. In addition, some of latexmk’s internal variables and subroutines are available. The ones listed be-
low are intended to be available to (advanced) users, and their specifications will generally have stability
under upgrades. Generally, the variables should be treated as read-only: Changing their values can have bad
consequences, since it is liable to mess up the consistency of what latexmk is doing.

$rule This variable has the name of the rule, as known to latexmk. Note that the exact contents of this
variable for a given rule may be dependent on the version of latexmk

$$Pbase
This gives the basename for the rule. Generally, it determines the names of generated files. E.g.,
for a run of *latex, the name of the .log file is the aux directory concatenated with the basename
and then ‘.log’.

27 December 2024 57

LATEXMK (1) General Commands Manual LATEXMK (1)

For a *latex rule, the basename is without a directory component. For other rules, it includes the
directory component (if any is used).

This (annoying) difference is associated with the different ways in which the commands invoked
by latexmk work when the command line includes a name for a source file that includes a direc-
tory component. For the *latex commands, the directory of the source file is irrelevant to the di-
rectory component the generated files, which instead is determined by the values in the -aux-direc-
tory and/or -output-directory options.

In contrast, many other programs (e.g., biber, bibtex) put their generated files in the same directory
as the source file, merely with a changed extension.

Note the double dollar signs: In Perl terms, the variable $Pbase is a reference to a variable that
contains the basename. The second dollar sign derefences the reference to give the actual value.
(A reference is is used rather like a pointer, and the ‘P’ (for ‘pointer’) at the start of the variable
name is a convention used in latexmk to indicate that the variable is a reference variable.)

$$Pdest
This gives the name of the main output file if any. Note the double dollar signs.

$$Psource
This gives the name of the primary source file. Note the double dollar signs.

add_hook(<stack_name>, <subroutine>)
See the section ‘Hooks’ for more details.

This adds the subroutine specified in the second argument to latexmk’s stack of hooks specified by
the stack name. It returns 1 on sucess, and zero otherwise (e.g., if the specified hook stack doesn’t
exist).

The subroutine can be specified by a reference to the subroutine, as in

add_hook(’after_xlatex_analysis’, mmz_analyze)

Given that the subroutine mmz_analyze has been defined in the rc file.

The subroutine can be specified by a string whose value is the name of the subroutine, e.g.,

add_hook(’after_xlatex_analysis’, ’mmz_analyze’)

In simple cases, the subroutine can be an anonymous subroutine defined in the call to add_hooks,

add_hook(’after_main_pdf’, sub{ print "TEST\n"; return 0; });

Observe that on success, the subroutine should return 0 (like a call to Perl’s system subroutine), so
normally this should be coded explicitly. If a hook subroutine returns a non-zero value, latexmk
treats that as an error condition.

ensure_path(var, values ...)

The first parameter is the name of one of the system’s environment variables for search paths. The
remaining parameters are values that should be in the variable. For each of the value parameters,

27 December 2024 58

LATEXMK (1) General Commands Manual LATEXMK (1)

if it isn’t already in the variable, then it is prepended to the variable; in that case the environment
variable is created if it doesn’t already exist. For separating values, the character appropriate the
the operating system is used -- see the configuration variable $search_path_separator.

Example:

ensure_path(’TEXINPUTS’, ’./custom_cls_sty_files//’);

(In this example, the trailing ’//’ is documented by TeX systems to mean that *latex search for files
in the specified directory and in all subdirectories.)

Technically ensure_path works by setting Perl’s variable $ENV{var}, where var is the name of the
target variable. The changed value is then passed as an environment variable to any invoked pro-
grams.

pushd(path), popd()
These subroutines are used when it is needed to temporarily change the working directory, as in

pushd(’some_directory’);
... Processing done with ’some_directory’ as the working directory
popd()

They perform exactly the same function as the commands of the same names in operating system
command shells like bash on Unix, and cmd.exe on the Windows.

rdb_add_generated(file, ...)
This subroutine is to be used in the context of a rule, that is, from within a subroutine that is carry-
ing out processing of a rule. Such is the case for the subroutine implementing a custom depen-
dency, or the subroutine invoked by using the "internal" keyword in the command specification
like that in the variable $latex.

Its arguments are a sequence of filenames which are generated during the running of the rule. The
names might arise from an analysis of the results of the run, e.g., in a log file, or from knowledge
of properties of the specific rule. Calling rdb_add_generated with these filenames ensures that
these files are flagged as generated by the rule in latexmk’s internal data structures. Basically, no
action is taken if the files have already been flagged as generated.

A main purpose of using this subroutine is for the situation when a generated file is also the source
file for some rule, so that latexmk can correctly link the dependency information in its network of
rules.

Note: Unlike some other subroutines in this section, there is no argument for a rule for
rdb_add_generated. Instead, the subroutine is to be invoked during the processing of a rule when
latexmk has set up an appropriate context (i.e., appropriate variables). In contrast, subroutines
with a rule argument can be used also outside a rule context.

rdb_ensure_file($rule, file)
This subroutine ensures that the given file is among the source files for the specified rule. It is typ-
ically used when, during the processing of a rule, it is known that a particular extra file is among
the dependencies that latexmk should know, but its default methods don’t find the dependency. Al-
most always the first argument is the name of the rule currently being processed, so it is then ap-
propriate to specify it by $rule.

27 December 2024 59

LATEXMK (1) General Commands Manual LATEXMK (1)

For examples of its use, see some of the files in the directory example_rcfiles of latexmk’s distribu-
tion. Currently the cases that use this subroutine are bib2gls-latexmkrc, exceltex_latexmkrc and
texinfo-latexmkrc. These illustrate typical cases where latexmk’s normal processing fails to detect
certain extra source files.

Note that rdb_ensure_file only has one filename argument, unlike other subroutines in this section.
If you want to apply its action to multiple files, you will need one call to rdb_ensure_file for each
file.

rdb_ensure_files_here(file, ...)
Like subroutine rdb_ensure_files, except that (a) it assumes the context is of a rule, and the files
are to be added to the source list for that rule; (b) multiple files are allowed.

rdb_remove_files($rule, file, ...)
This subroutine removes one or more files from the dependency list for the given rule.

rdb_remove_generated(file, ...)
This subroutine is to be used in the context of a rule, that is, from within a subroutine that is carry-
ing out processing of a rule. It performs the opposite action to rdb_add_generated. Its effect is to
ensure that the given filenames are not listed in latexmk’s internal data structures as being gener-
ated by the rule.

rdb_list_source($rule)
This subroutine returns the list of source files (i.e., the dependency list) for the given rule.

rdb_set_source($rule, file, ...)

rdb_set_source($rule, @files)
This subroutine sets the dependency list for the given rule to be the specified files. Files that are
already in the list have unchanged information. Files that were not in the list are added to it. Files
in the previous dependency list that are not in the newly specified list of files are removed from the
dependency list.

Run_subst(command_spec)
This subroutine runs the command specified by command_spec. The specification is a string in
the format listed in the section "Format of Command Specifications". An important action of the
Run_subst is to make substitutions of placeholders, e.g., %S and %D for source and destination
files; these get substituted before the command is run. In addition, the command after substitution
is printed to the screen unless latexmk is running in silent mode.

test_gen_file_time (<file>)
This subroutine is used in the context of a rule. It returns true or false according to whether or not
a file of the given name both exists and was generated in the latest run of the rule. If the subrou-
tine returns false, but the file exists, then the file is a leftover from a previous run.

The test for a file being generated on the current run is whether the modification time of the file is
at least as recent as the time that the run of the rule was started. An allowance for the granularity
of the values of modification time on file systems is made. See the description of the variable
$filetime_causality_threshold for details.

In addition, latexmk makes allowance for the possiblity that files are hosted on a different

27 December 2024 60

LATEXMK (1) General Commands Manual LATEXMK (1)

computer than that running latexmk and that the system clock times on the two computers are mis-
matched. Latexmk automatically detects (and reports) any significant mismatch and corrects for
it.

Coordinated Setting of Commands for *latex
To set all of $dvilualatex, $hilatex, $latex, $pdflatex, $lualatex, and $xelatex to a common pattern, you can
use one of the following subroutines, std_tex_cmds, alt_tex_cmds, and set_tex_cmds.

To get the standard commands, use

&std_tex_cmds;

This results in $latex = ’latex %O %S’, and similarly for $dvilualatex, $hilatex, $pdflatex, $lualatex, and
$xelatex. Note the ampersand in the invocation; this indicates to Perl that a subroutine is being called.
(The use of this subroutine enables you to override previous redefinitions of the $latex, etc variables, which
might have occurred in an earlier-read rc file.)

To be able to use the string provided by the -pretex option (if any), you can use

&alt_tex_cmds;

This results in $latex = ’latex %O %P’, etc. Again note the ampersand in the invocation; this indicates to
Perl that a subroutine is being called.

A more general way of specifying the variables is using

set_tex_cmds(’CMD_SPEC’);

Here CMD_SPEC is the command line without the program name. This results in $latex = ’latex
CMD_SPEC’, and similarly for $pdflatex, etc. (An ampersand preceding the subroutine name is not neces-
sary here, since the parentheses show Perl that a subroutine is being invoked.)

An example that provides the --interaction=batchmode option to the *latex commands would be

set_tex_cmds(’--interaction=batchmode %O %S’);

This results in $latex = ’latex --interaction=batchmode %O %S ’, etc. Note that when ’%O’ appears after
the added option, as here, options provided on the command line to latexmk can override the supplied one.

A more general command line can be set up by using the placeholder ’%C’ in CMD_SPEC. The ’%C’ is
substituted by the basic name of the command, i.e., whichever of ’latex’, ’pdflatex’, etc is appropriate.
(More than one occurrence of ’%C’ is allowed.) For example to use the development/pre-release versions
of latex, etc, which have names, ’latex-dev’, ’pdflatex-dev’, etc, you could use

set_tex_cmds(’%C-dev %O %S’);

This results in $latex = ’latex-dev %O %S’, etc. (The pre-release programs latex-dev etc are provided in
current distributions of TeXLive and MiKTeX.)

Hooks
Latexmk provides a way to arrange for user-defined subroutines to be called at certain points in the process-
ing. These can be used to configure appropriate behavior and actions beyond latexmk’s normal behavior.
For a good example of how they can be used to accommodate latexmk’s behavior to particular packages,

27 December 2024 61

LATEXMK (1) General Commands Manual LATEXMK (1)

see the file memoize_latexmkrc in the example_rcfiles subdirectory of the latexmk distribution. (In a stan-
dard TeXLive installation, that subdirectory is to be found in texmf-dist/doc/support/latexmk/)

The hook mechanism is complementary to the method of redefining command strings like $pdflatex etc.
The two methods have overlapping domains of usefulness.

Note that the hook mechanism is newly made public in v. 4.84 of latexmk. It is subject to change and im-
provement as experience is gained.

The hooks are arranged in named hook stacks, and a hook subroutine is added to a given stack by latexmk’s
add_hook subroutine (documented above). The currently available stacks are as follows, listed in the ap-
proximate order in which they are encountered in processing a document:

before_xlatex
The subroutines in this hook stack are called just before a
*latex programs is run.

after_xlatex
The subroutines in this hook stack are called after a *latex programs is
run. Before the subroutines are called, latexmk has done some immediate
postprocessing, e.g., to move the generated pdf file from the aux
directory to the output directory when $emulate_aux is set to 1.

after_xlatex_analysis
The subroutines in this hook stack are called after latexmk has done its
dependency analysis after a *latex programs is run. Subroutines in this
stack provide a useful way of adding items to the dependency information
associated with particular packages and that latexmk doesn’t
automatically deal with.

after_main_pdf
The subroutines in this hook stack are called after one of the rules that
creates the document’s pdf file. (This covers any of pdflatex, lualatex,
dvipdf, ps2pdf, xdvipdfmx.)

cleanup
The subroutines in this hook stack are called whenever latexmk is about
to do a cleanup operation. They can be used, for example, to tailor the
deleted files to the pecularities of particular packages when latexmk’s
general mechanisms for specifying files to be deleted are too inflexible.

These subroutines are called before latexmk does any of its own file
deletion; thus the hook subroutines have access to all the generated
files that give package-specific information.

cleanup_extra_full
The subroutines in this hook stack are called in addition to the ones in
the cleanup stack, whenever a full cleanup operation is to be done (i.e.,
one that includes the pdf, ps etc files). They are called immediately
after those in the cleanup stack, but still before latexmk does any of
its own file deletion.

27 December 2024 62

LATEXMK (1) General Commands Manual LATEXMK (1)

(Any other stacks defined in latexmk.pl but not listed above are to be regarded as experimental and subject
to change.)

Each subroutine should return 0 on success and a non-zero value on failure. This matches the convention
used for running programs, e.g., by Perl’s system subroutine, and the matching convention used for subrou-
tines for custom dependencies in latexmk.

For most of the hook stacks, the subroutines are called in the context of a rule, with variables like $rule de-
fined. However, some hook stacks, like the cleanup ones, are called from outside any rule; and latexmk ad-
justs the relevant variables to refer to the overall task (i.e., of processing a particular main .tex file).

Advanced configuration: Using latexmk with make
This section is targeted only at advanced users who use the make program for complex projects, as for soft-
ware development, with the dependencies specified by a Makefile.

Now the basic task of latexmk is to run the appropriate programs to make a viewable version of a LaTeX
document. However, the usual make program is not suited to this purpose for at least two reasons. First is
that the use of LaTeX involves circular dependencies (e.g., via .aux files), and these cannot be handled by
the standard make program. Second is that in a large document the set of source files can change quite fre-
quently, particularly with included graphics files; in this situation keeping a Makefile manually updated is
inappropriate and error-prone, especially when the dependencies can be determined automatically. Latexmk
solves both of these problems robustly.

Thus for many standard LaTeX documents latexmk can be used by itself without the make program. In a
complex project it simply needs to be suitably configured. A standard configuration would be to define cus-
tom dependencies to make graphics files from their source files (e.g., as created by the xfig program). Cus-
tom dependencies are latexmk’s equivalent of pattern rules in Makefiles.

Nevertheless there are projects for which a Makefile is appropriate, and it is useful to know how to use la-
texmk from a Makefile. A typical example would be to generate documentation for a software project. Po-
tentially the interaction with the rest of the rules in the Makefile could be quite complicated, for example if
some of the source files for a LaTeX document are generated by the project’s software.

In this section, I give a couple of examples of how latexmk can be usefully invoked from a Makefile. The
examples use specific features of current versions of GNU make, which is the default on both linux and OS-
X systems. They may need modifications for other versions of make.

The simplest method is simply to delegate all the relevant tasks to latexmk, as is suitable for a straightfor-
ward LaTeX document. For this a suitable Makefile is like

.PHONY : FORCE_MAKE
all : try.pdf
%.pdf : %.tex FORCE_MAKE

latexmk -pdf -dvi- -ps- $<

(Note: the last line must be introduced by a tab for the Makefile to function correctly!) Naturally, if making
try.pdf from its associated LaTeX file try.tex were the only task to be performed, a direct use of latexmk
without a Makefile would normally be better. The benefit of using a Makefile for a LaTeX document would
be in a larger project, where lines such as the above would be only be a small part of a larger Makefile.

The above example has a pattern rule for making a .pdf file from a .tex file, and it is defined to use latexmk
in the obvious way. There is a conventional default target named "all", with a prerequisite of try.pdf. So
when make is invoked, by default it makes try.pdf. The only complication is that there may be many source

27 December 2024 63

LATEXMK (1) General Commands Manual LATEXMK (1)

files beyond try.tex, but these aren’t specified in the Makefile, so changes in them will not by themselves
cause latexmk to be invoked. Instead, the pattern rule is equipped with a "phony" prerequisite
FORCE_MAKE; this has the effect of causing the rule to be always out-of-date, so that latexmk is always
run. It is latexmk that decides whether any action is needed, e.g., a rerun of pdflatex. Effectively the Make-
file delegates all decisions to latexmk, while make has no knowledge of the list of source files except for pri-
mary LaTeX file for the document. If there are, for example, graphics files to be made, these must be made
by custom dependencies configured in latexmk.

But something better is needed in more complicated situations, for example, when the making of graphics
files needs to be specified by rules in the Makefile. To do this, one can use a Makefile like the following:

TARGETS = document1.pdf document2.pdf
DEPS_DIR = .deps
LATEXMK = latexmk -recorder -use-make -deps \

-e ’warn qq(In Makefile, turn off custom dependencies\n);’ \
-e ’@cus_dep_list = ();’ \
-e ’show_cus_dep();’

all : $(TARGETS)
$(foreach file,$(TARGETS),$(eval -include $(DEPS_DIR)/$(file)P))
$(DEPS_DIR) :

mkdir $@
%.pdf : %.tex

if [! -e $(DEPS_DIR)]; then mkdir $(DEPS_DIR); fi
$(LATEXMK) -pdf -dvi- -ps- -deps-out=$(DEPS_DIR)/$@P $<

%.pdf : %.fig
fig2dev -Lpdf $< $@

(Again, the lines containing the commands for the rules should be started with tabs.) This example was in-
spired by how GNU automake handles automatic dependency tracking of C source files.

After each run of latexmk, dependency information is put in a file in the .deps subdirectory. The Makefile
causes these dependency files to be read by make, which now has the full dependency information for each
target .pdf file. To make things less trivial it is specificed that two files document1.pdf and document2.pdf
are the targets. The dependency files are .deps/document1.pdfP and .deps/document2.pdfP.

There is now no need for the phony prerequisite for the rule to make .pdf files from .tex files. But I have
added a rule to make .pdf files from .fig files produced by the xfig program; these are commonly used for
graphics insertions in LaTeX documents. Latexmk is arranged to output a dependency file after each run. It
is given the -recorder option, which improves its detection of files generated during a run of pdflatex; such
files should not be in the dependency list. The -e options are used to turn off all custom dependencies, and
to document this. Instead the -use-make is used to delegate the making of missing files to make itself.

Suppose in the LaTeX file there is a command \includegraphics{graph}, and an xfig file "graph.fig" exists.
On a first run, pdflatex reports a missing file, named "graph". Latexmk succeeds in making "graph.pdf" by
calling "make graph.pdf", and after completion of its work, it lists "fig.pdf" among the dependents of the
file latexmk is making. Then let "fig.fig" be updated, and then let make be run. Make first remakes
"fig.pdf", and only then reruns latexmk.

Thus we now have a method by which all the subsidiary processing is delegated to make.

Escaping of characters in dependency lists: There are certain special characters that need to be escaped
when names of files and directories containing them appear in a dependency list used by a make program.
Generally, such special characters are best avoided.

27 December 2024 64

LATEXMK (1) General Commands Manual LATEXMK (1)

By default, latexmk does no escaping of this kind, and the user will have to arrange to deal with the issue
separately, if the relevant special characters are used. Note that the rules for escaping depend on which
make program is used, and on its version.

One special case is of spaces, since those are particularly prevalent, notably in standard choices of name for
a user’s home directory. So latexmk does provide an option to escape spaces. See the option -deps_es-
cape=... and the variable $deps_escape for details.

NON_ASCII CHARACTERS IN FILENAMES, RC FILES, ETC
Modern operating systems and file systems allow non-ASCII characters in the names of files and directories
that encompass the full Unicode range. Mostly, latexmk deals with these correctly. However, there are
some situations in which there are problems, notably on Microsoft Windows. Prior to version 4.77, latexmk
had problems with non-ASCII filenames on Windows, even though there were no corresponding problems
on macOS and Linux. These problems are corrected in the present version.

DETAILS TO BE FILLED IN

SEE ALSO
latex(1), bibtex(1), lualatex(1), pdflatex(1), xelatex(1).

BUGS (SELECTED)
Sometimes a viewer (gv) tries to read an updated .ps or .pdf file after its creation is started but before the
file is complete. Work around: manually refresh (or reopen) display. Or use one of the other previewers
and update methods.

(The following isn’t really a bug, but concerns features of previewers.) Preview continuous mode only
works perfectly with certain previewers: Xdvi on UNIX/Linux works for dvi files. Gv on UNIX/Linux
works for both postscript and pdf. Ghostview on UNIX/Linux needs a manual update (reopen); it views
postscript and pdf. Gsview under MS-Windows works for both postscript and pdf, but only reads the up-
dated file when its screen is refreshed. Acroread under UNIX/Linux views pdf, but the file needs to be
closed and reopened to view an updated version. Under MS-Windows, acroread locks its input file and so
the pdf file cannot be updated. (Remedy: configure latexmk to use sumatrapdf instead.)

THANKS TO
Authors of previous versions. Many users with their feedback, and especially David Coppit (username
david at node coppit.org) who made many useful suggestions that contributed to version 3, and Herbert
Schulz. (Please note that the e-mail addresses are not written in their standard form to avoid being har-
vested too easily.)

AUTHOR
Current version, by John Collins (Version 4.86a). Report bugs etc to his e-mail (jcc8 at psu.edu).

Released version can be obtained from CTAN: <http://www.ctan.org/pkg/latexmk/>, and from the author’s
website <https://www.cantab.net/users/johncollins/latexmk/>.
Modifications and enhancements by Evan McLean (Version 2.0)
Original script called "go" by David J. Musliner (RCS Version 3.2)

27 December 2024 65

LATEXMK (1) General Commands Manual LATEXMK (1)

27 December 2024 66

	LATEXMK(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	LATEXMK OPTIONS AND ARGUMENTS ON COMMAND LINE
	EXAMPLES
	DEALING WITH ERRORS, PROBLEMS, ETC
	AUXILIARY AND OUTPUT DIRECTORIES
	ALLOWING FOR CHANGE OF OUTPUT FILE TYPE
	CONFIGURATION/INITIALIZATION (RC) FILES
	HOW TO SET VARIABLES IN INITIALIZATION FILES
	FORMAT OF COMMAND SPECIFICATIONS
	LIST OF CONFIGURATION VARIABLES USABLE IN INITIALIZATION FILES
	CUSTOM DEPENDENCIES
	Defining a custom dependency:
	How custom dependencies are used:
	Function to implement custom dependency, traditional method:
	Removing custom dependencies, and when you might need to do this:
	Function implementing custom dependency, alternative methods:
	Old Method of Defining Custom Dependencies:

	ADVANCED CONFIGURATION: SOME EXTRA RESOURCES AND ADVANCED TRICKS
	Variables and subroutines for processing a rule
	Coordinated Setting of Commands for *latex
	Hooks
	Advanced configuration: Using latexmk with make

	NON_ASCII CHARACTERS IN FILENAMES, RC FILES, ETC
	SEE ALSO
	BUGS (SELECTED)
	THANKS TO
	AUTHOR

